Skip to main content

5 Different Bigdata Storage Patterns

Data is now more than just plain text, it can exist in various persistence-storage mechanisms, with Hadoop distributed file system (HDFS) being one of them. The way data is ingested or the sources from which data is ingested affects the way data is stored. On the other hand, how the data is pushed further into the downstream systems or accessed by the data access layer decides how the data is to be stored.

The need to store huge volumes of data has forced databases to follow new rules of data relationships and integrity that are different from those of relational database management systems (RDBMS). RDBMS follow the ACID rules of atomicity, consistency, isolation and durability. These rules make the database reliable to any user of the database. However, searching huge volumes of big data and retrieving data from them would take large amounts of time if all the ACID rules were enforced.
NoSQL Databases
NoSQL Databases

A typical scenario is when we search for a certain topic using Google. The search returns innumerable pages of data; however, only one page is visible or basically available (BA). The rest of the data is in a soft state (S) and is still being assembled by Google, though the user is not aware of it. By the time the user looks at the data on the first page, the rest of the data becomes eventually consistent (E). This phenomenon—basically available soft state and eventually consistent—is the rule followed by the big data databases, which are generally NoSQL databases following BASE properties.

Database theory suggests that any distributed NoSQL big database can satisfy only two properties predominantly and will have to relax standards on the third. The three properties are consistency, availability, and partition tolerance (CAP). This is the CAP theorem.

  • Polyglot pattern: Multiple types of storage mechanisms—like RDBMS, file storage, CMS, OODBMS, NoSQL and HDFS—co-exist in an enterprise to solve the big data problem.
  • The aforementioned paradigms of ACID, BASE, and CAP give rise to new big data storage patterns like below:
  • Façade pattern: HDFS serves as the intermittent Façade for the traditional DW systems.
  • Lean pattern: HBase is indexed using only one column-family and only one column and unique row-key.
  • NoSQL pattern: Traditional RDBMS systems are replaced by NoSQL alternatives to facilitate faster access and querying of big data.

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:

EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.

CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. 
Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice