Skip to main content

Oracle 12C 'Bitmap Index' benefits over B-tree Index

Oracle 12C 'Bitmap Index' benefits over B-tree Index
#Oracle 12C 'Bitmap Index' benefits over B-tree Index:
A bitmap index has a significantly different structure from a B-tree index in the leaf node of the index. It stores one string of bits for each possible value (the cardinality) of the column being indexed.

Note: One string of BITs means -Each tupple of possible value it assigns '1' bit in a string.So, all the BITs become a string ( This is an example, on which column you created BIT map index)

The length of the string of bits is the same as the number of rows in the table being indexed.

In addition to saving a tremendous amount of space compared to traditional indexes, a bitmap index can provide dramatic improvements in response time because Oracle can quickly remove potential rows from a query containing multiple WHERE clauses long before the table itself needs to be accessed.

Multiple bitmaps can use logical AND and OR operations to determine which rows to access from the table.

Although you can use a bitmap index on any column in a table, it is most efficient when the column being indexed has a low cardinality, or number of distinct values.

For example, the GENDER column in the PERS table will be either NULL, M, or F. The bitmap index on the GENDER column will have only three bitmaps stored in the index. On the other hand, a bitmap index on the LAST_NAME column will have close to the same number of bitmap strings as rows in the table itself. The queries looking for a particular last name will most likely take less time if a full table scan is performed instead of using an index. In this case, a traditional B-tree non-unique index makes more sense.

A variation of bitmap indexes called bitmap join indexes creates a bitmap index on a table column that is frequently joined with one or more other tables on the same column. This provides tremendous benefits in a data warehouse environment where a bitmap join index is created on a fact table and one or more dimension tables, essentially pre-joining those tables and saving CPU and I/O resources when an actual join is performed.

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:
EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.
CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice