Skip to main content

How to Identify Data Relevant for Data Science Analytics

Much of the data we currently work with is the direct consequence of Web 2.0
#Much of the data we currently work with is the direct consequence of Web 2.0:
Data is everywhere: your government, your web server,your business partners, even your body. While we aren’t drowning in a sea of data, we’re finding that almost everything can (or has) been instrumented. We frequently combine publishing industry data from Nielsen Book Scan with our own sales data, publicly available Amazon data, and even job data to see what’s happening in the publishing industry.

Sites like Infochimps and Factual provide access to many large datasets, including climate data, MySpace activity streams, and game logs from sporting events. Factual enlists users to update and improve its datasets, which cover topics as diverse as endocrinologists to hiking trails.

How the data is growing

Much of the data we currently work with is the direct consequence of Web 2.0, and of Moore’s Law applied to data. The Web has people spending more time online,and leaving a trail of data wherever they go. Mobile applications leave an even richer data trail, since many of them are annotated with geolocation, or involve video or audio, all of which can be mined.

Point-of-sale devices and frequent-shopper’s cards make it possible to capture all of your retail transactions, not just the ones you make online. All of this data would be useless if we couldn’t store it, and that’s where Moore’s Law comes in. Since the early ’80s, processor speed has increased from 10 MHz to 3.6 GHz—an increase of 360 (not counting increases in word length and number of cores).

The need of Storage capacity

But we’ve seen much bigger increases in storage capacity, on every level. RAM has moved from $1,000/MB to roughly $25/GB—a price reduction of about 40000, to say nothing of the reduction in size and increase in speed. Hitachi made the first gigabyte disk drives in 1982, weighing in at roughly 250 pounds; now terabyte drives are consumer equipment, and a 32 GB microSD card weighs about half a gram. Whether you look at bits per gram, bits per dollar, or raw capacity, storage has more than kept pace with the increase of CPU speed.


Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.

What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:

EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.

CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. 
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice