Skip to main content

How Hadoop is best suitable for large legacy data

I have selected a good interview on legacy data. You all know that lot of data is available on legacy systems. Hadoop is the mechanism you can use to process the data to get great business insights.

How should we be thinking about migrating data from legacy systems?
Treat legacy data as you would any other complex data type. HDFS acts as an active archive, enabling you to cost effectively store data in any form for as long as you like and access it when you wish to explore the data. And with the latest generation of data wrangling and ETL tools, you can transform, enrich, and blend that legacy data with other, newer data types to gain a unique perspective on what’s happening across your business.
Hadoop and Legacy data
Stockphotos.io

What are your thoughts on getting combined insights from the existing data warehouse and Hadoop?
Typically one of the starter use cases for moving relational data off a warehouse and into Hadoop is active archiving. This is the opportunity to take data that might have otherwise gone to archive and keep it available for historical analysis. The clear benefit is being able to analyze data for the types of extended time periods that would not otherwise be cost feasible (or possible) in traditional data warehouses.  An example would be looking at sales, not just in the current economic cycle, but going back 3 – 5 years or more across multiple economic cycles.

You should look at Hadoop as a platform for data transformation and discovery, compute intensive tasks that aren’t a fit for a warehouse. Then consider feeding some of the new data and insights back into the data warehouse to increase its value.

What’s the value of putting Hadoop in Cloud? 

The cloud presents a number of opportunities for Hadoop users. Time to benefit through quicker deployment and eliminating the need to maintain cluster infrastructure Good environment for running proof-of-concepts and experimenting with Hadoop Most Internet of Things data is cloud data. Running Hadoop in the cloud enables you to minimize the movement of that data The elasticity of the cloud enables you to rapidly scale your cluster to address new use cases or add more storage and compute.

Comments

Popular posts from this blog

Four Tableau products a quick review and explanation

I want to share you what are the Products most popular.

Total four products. Read the details below.

Tableau desktop-(Business analytics anyone can use) - Tableau  Desktop  is  based  on  breakthrough technology  from  Stanford  University  that  lets  you drag & drop to analyze data. You can connect to  data in a few clicks, then visualize and create interactive dashboards with a few more.

We’ve done years of research to build a system that supports people’s natural  ability  to  think visually. Shift fluidly between views, following your natural train of thought. You’re not stuck in wizards or bogged down writing scripts. You just create beautiful, rich data visualizations.  It's so easy to use that any Excel user can learn it. Get more results for less effort. And it’s 10 –100x faster than existing solutions.

Tableau server
Tableau  Server  is  a  business  intelligence  application  that  provides  browser-based  analytics anyone can use. It’s a rapid-fire alternative to th…

The Sqoop in Hadoop story to process structural data

Why Sqoop you need while working on Hadoop-The Sqoop and its primary reason is to import data from structural data sources such as Oracle/DB2 into HDFS(also called Hadoop file system).
To our readers, I have collected a good video from Edureka which helps you to understand the functionality of Sqoop.

The comparison between Sqoop and Flume

The Sqoop the word came from SQL+Hadoop Sqoop word came from SQL+HADOOP=SQOOP. And Sqoop is a data transfer tool. The main use of Sqoop is to import and export the large amount of data from RDBMS to HDFS and vice versa. List of basic Sqoop commands Codegen- It helps to generate code to interact with database records.Create-hive-table- It helps to Import a table definition into a hiveEval- It helps to evaluateSQL statement and display the resultsExport-It helps to export an HDFS directory into a database tableHelp- It helps to list the available commandsImport- It helps to import a table from a database to HDFSImport-all-tables- It helps to import tables …

Different Types Of Payment Cards

The Credit Card (Shopping): The purpose o this card is to buy any item withing the limit prescribed by banks to cardholder. These cards can have both Magnetic stripe and Chip cards. 
Now a days all banks are issuing credit cards with CHIP and PIN. After entering the PIN by cardholder, then transaction starts for further processing.

The debit (ATM, Cash) card is a relatively new method of payment. It is different from a credit card because the debit cardholder pays with the money available in their bank account, which is debited immediately in real time. A debit card seems to be more dangerous compared to a credit card because the debit card is directly linked to the bank checking account and usually allows ATM cash withdrawals.

On the other hand, it is more protected by the required two-factor authentication (PIN number plus card itself). The real dangerous element of many branded debit cards is that they can be processed as credit cards, without entering the PIN.

The Gift card
is simila…