Skip to main content

10 the best SAS new features for dashboard

Image Courtesy-from RD
Image Courtesy-from RD
SAS visual analytics is a completely new architecture from SAS. It has the capability to manage large amounts of data and bring it into memory to analyze it, explore it and publish reports. Although the data amounts are massive — up to 1.1 billion rows of data, the SAS LASR Analytic Server, to use its full name, was designed to be intuitive to users without an advanced degree in computer science.

A report from Simply hired.
All about SAS analytics Server - The SAS Analytic Server begins with an eight-blade server with 96 processor cores, 768 gigabytes memory and 4.8 terabytes (TB) of disk storage. The upper end of the reference configurations is 96 blades with 1,152 cores, 9.2 TB memory and 57.6 TB of disk storage, enough disk space to store the entire Library of Congress six times.
Where to Learn SAS Visual Analytics

Also read: Modelling with SAS a detailed video course to get instant benefit 

The real SAS Visual analytics benefits
  • The speed of in-memory architecture offers tremendous benefit. Organisations can explore huge data volumes and get answers to critical questions in near-real time. SAS Visual Analytics offers a double bonus: the speed of in-memory analytics plus self-service eliminates the traditional wait for IT-generated reports. 
  • Businesses today must base decisions on insight gleaned from data, and that process needs to be close to instantaneous. 
  • Despite being user-friendly, the server has been developed to make it easy for IT to manage the data and secure it without sacrificing usability, Guard said. It includes a visual analytics explorer for ad hoc analysis and discovery, he added.
SAS Visual Analytics helps business users to visually explore data on their own. But it goes well beyond traditional query and reporting. Running on low-cost, industry-standard blade servers, its high-performance in-memory architecture delivers answers in seconds or minutes instead of hours or days.

Where SAS differs
SAS analytics differ from many business intelligence (BI) solutions which simply move data from a SQL database into memory. That does not support regressions or logistics models becase those capabilities are not built into databases, he said.

In banking, analysts may develop hundreds of models a year; with SAS they will be able to do it 10 to 20 times faster. The importance of changing models rapidly is incredibly important in the banking industry.

A demo on SAS visual analytics:

The computerWorld says-SAS also plans to broaden its user base by making its software more appealing beyond computer statisticians and data scientists. To this end, the company has paired its data exploration software, called SAS Visual Analytics, with its software for developing predictive models, called SAS Visual Statistics. The pairing can allow non-data scientists, such as line of business analysts and risk managers, to predict future trends based on current data.
How companies will benefit
  • With SAS Analytic Server companies can solve problems they had never dealt with before because they it offers speed of analysis at a large scale. Users don’t have to analyze samples; they can look at everything.
  • SAS Visual Analytics will let us quickly dig into our big data to uncover opportunities, and in time, to fully exploit them.”The SAS LASR Analytic Server, uses Hadoop (embedded Hadoop Distributed File System) as local storage at the server for fault tolerance. SAS LASR Analytic Server has been tested on billions of rows of data and is extremely scalable, bypassing the known column limitations of many relational database management systems (RDBMS).

Comments

Popular posts from this blog

Four Tableau products a quick review and explanation

I want to share you what are the Products most popular.

Total four products. Read the details below.

Tableau desktop-(Business analytics anyone can use) - Tableau  Desktop  is  based  on  breakthrough technology  from  Stanford  University  that  lets  you drag & drop to analyze data. You can connect to  data in a few clicks, then visualize and create interactive dashboards with a few more.

We’ve done years of research to build a system that supports people’s natural  ability  to  think visually. Shift fluidly between views, following your natural train of thought. You’re not stuck in wizards or bogged down writing scripts. You just create beautiful, rich data visualizations.  It's so easy to use that any Excel user can learn it. Get more results for less effort. And it’s 10 –100x faster than existing solutions.

Tableau server
Tableau  Server  is  a  business  intelligence  application  that  provides  browser-based  analytics anyone can use. It’s a rapid-fire alternative to th…

The Sqoop in Hadoop story to process structural data

Why Sqoop you need while working on Hadoop-The Sqoop and its primary reason is to import data from structural data sources such as Oracle/DB2 into HDFS(also called Hadoop file system).
To our readers, I have collected a good video from Edureka which helps you to understand the functionality of Sqoop.

The comparison between Sqoop and Flume

The Sqoop the word came from SQL+Hadoop Sqoop word came from SQL+HADOOP=SQOOP. And Sqoop is a data transfer tool. The main use of Sqoop is to import and export the large amount of data from RDBMS to HDFS and vice versa. List of basic Sqoop commands Codegen- It helps to generate code to interact with database records.Create-hive-table- It helps to Import a table definition into a hiveEval- It helps to evaluateSQL statement and display the resultsExport-It helps to export an HDFS directory into a database tableHelp- It helps to list the available commandsImport- It helps to import a table from a database to HDFSImport-all-tables- It helps to import tables …

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…