Featured Post

How to Build CI/CD Pipeline: GitHub to AWS

Image
 Creating a CI/CD pipeline to deploy a project from GitHub to AWS can be done using various AWS services like AWS CodePipeline, AWS CodeBuild, and optionally AWS CodeDeploy or Amazon ECS for application deployment. Below is a high-level guide on how to set up a basic GitHub to AWS pipeline: Prerequisites AWS Account : Ensure access to the AWS account with the necessary permissions. GitHub Repository : Have your application code hosted on GitHub. IAM Roles : Create necessary IAM roles with permissions to interact with AWS services (e.g., CodePipeline, CodeBuild, S3, ECS, etc.). AWS CLI : Install and configure the AWS CLI for easier management of services. Step 1: Create an S3 Bucket for Artifacts AWS CodePipeline requires an S3 bucket to store artifacts (builds, deployments, etc.). Go to the S3 service in the AWS Management Console. Create a new bucket, ensuring it has a unique name. Note the bucket name for later use. Step 2: Set Up AWS CodeBuild CodeBuild will handle the build proces

5 Key Ideas on SAS Banking Analytics

SAS is providing solutions for banking. Getting away with financial crime just got harder. The latest SAS Financial Crimes Suite arms institutions to detect potential suspicious activity more efficiently than ever.
A new customer due diligence solution within the suite more accurately detects changes in a customer’s risk profile. Enhanced anti-money laundering and case management capabilities also make it easier to have a complete view of threats across an institution’s financial crimes investigation unit.

“A comprehensive view of potential threats will help in efforts to thwart criminals from successful attempts of hiding illicit funds,” says James Wester, global payments research director at IDC Financial Insights.

 “A technology infrastructure with customer risk rating and high-performance analytics will help speed detection and investigation in all channels.”.

SAS Analytics Suite for Banking Crimes

  1. Today’s rigorous regulatory environment requires banks to move quickly with confidence. SAS Financial Crimes Suite uses a visual scenario designer to recommend optimal detection models. The designer instantly assesses the impact of potential scenarios and risk-rating changes.
  2. In-memory architecture speeds analysis of real-time testing environments, reducing guesswork through improved model efficiency. 
  3. To identify potential money launderers and people funneling money to terrorists, institutions must constantly assess customer activity. The SAS Customer Due Diligence does this by weighing all customer data to set baseline expectations. 
  4. Data management features easily integrate key customer attributes from external sources and detect incriminating relationships. 
  5. The regulatory reporting interface controls both workflow and investigations. Context-aware analytics intercept and assess events for possible risk. The resulting baseline customer score can be automatically updated with a new risk rating based on behavior changes
Related


Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

How to Check Kafka Available Brokers

SQL Query: 3 Methods for Calculating Cumulative SUM