Featured Post

How to Work With Tuple in Python

Image
Tuple in python is one of the streaming datasets. The other streaming datasets are List and Dictionary. Operations that you can perform on it are shown here for your reference. Writing tuple is easy. It has values of comma separated, and enclosed with parenthesis '()'. The values in the tuple are immutable, which means you cannot replace with new values. #1. How to create a tuple Code: my_tuple=(1,2,3,4,5) print(my_tuple) Output: (1, 2, 3, 4, 5) ** Process exited - Return Code: 0 ** Press Enter to exit terminal #2. How to read tuple values Code: print(my_tuple[0]) Output: 1 ** Process exited - Return Code: 0 ** Press Enter to exit terminal #3. How to add two tuples Code: a=(1,6,7,8) c=(3,4,5,6,7,8) d=print(a+c) Output: (1, 6, 7, 8, 3, 4, 5, 6, 7, 8) ** Process exited - Return Code: 0 ** Press Enter to exit terminal #4.  How to count tuple values Here the count is not counting values; count the repetition of a given value. Code: sample=(1, 6, 7, 8, 3, 4, 5, 6, 7, 8) print(sample

Analytics on Fly - Read It

The basis for real-time analytics is to have all resources at disposal in the moment they are called for . So far, special materialized data structures, called cubes, have been created to efficiently serve analytical reports. Such cubes are based on a fixed number of dimensions along which analytical reports can define their result sets. Consequently, only a particular set of reports can be served by one cube. If other dimensions are needed, a new cube has to be created or existing ones have to be extended. In the worst case, a linear increase in the number of dimensions of a cube can result in an exponential growth of its storage requirements. Extending a cube can result in a deteriorating performance of those reports already using it. The decision to extend a cube or build a new one has to be considered carefully. 

In any case, a wide variety of cubes may be built during the lifetime of a system to serve reporting, thus increasing storage requirements and also maintenance efforts.

Instead of working with a predefined set of reports, business users should be able to formulate ad-hoc reports. Their playground should be the entire set of data the company owns, possibly including further data from external sources. Assuming a fast in-memory database, no more pre-computed materialized data structures are needed. As soon as changes to data are committed to the database, they will be visible for reporting. 

The preparation and conversion steps of data if still needed for reports are done during query execution and computations take place on the fly. Computation on the fly during reporting on the basis of cubes that do not store data, but only provide the interface for reporting, solves a problem that has existed up to now and allows for performance optimization of all analytical reports likewise

Comments

Popular posts from this blog

7 AWS Interview Questions asked in Infosys, TCS

How to Decode TLV Quickly

Hyperledger Fabric: 20 Real Interview Questions