Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index ...

Apache Yarn to Manage Resources a Solution

Apache Hadoop is one of the most popular tools for big data processing. It has been successfully deployed in production by many companies for several years. 

Though Hadoop is considered a reliable, scalable, and cost-effective solution, it is constantly being improved by a large community of developers. As a result, the 2.0 version offers several revolutionary features, including Yet Another Resource Negotiator (YARN), HDFS Federation, and a highly available NameNode, which make the Hadoop cluster much more efficient, powerful, and reliable. 

Apache Yarn

Apache Hadoop 2.0 includes YARN, which separates the resource management and processing components. The YARN-based architecture is not constrained to MapReduce.
  • New developmens in Hadoop 2.0 Architecture with YARN: 
  • ResourceManager instead of a cluster manager 
  • ApplicationMaster instead of a dedicated and short-lived JobTracker 
  • NodeManager instead of TaskTracker 
  • A distributed application instead of a MapReduce job 

Basic changes in Hadoop 2.0 architecture

  • The ResourceManager, the NodeManager, and a container are not concerned about the type of application or task.
  • All application framework-specific code is simply moved to its ApplicationMaster so that any distributed framework can be supported by YARN — as long as someone implements an appropriate ApplicationMaster for it.
  • Thanks to this generic approach, the dream of a Hadoop YARN cluster running many various workloads comes true. Imagine: a single Hadoop cluster in your data center that can run MapReduce, Giraph, Storm, Spark, Tez/Impala, MPI, and more.

Read More

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)