Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

Apache Yarn to Manage Resources a Solution

Apache Hadoop is one of the most popular tools for big data processing. It has been successfully deployed in production by many companies for several years. 

Though Hadoop is considered a reliable, scalable, and cost-effective solution, it is constantly being improved by a large community of developers. As a result, the 2.0 version offers several revolutionary features, including Yet Another Resource Negotiator (YARN), HDFS Federation, and a highly available NameNode, which make the Hadoop cluster much more efficient, powerful, and reliable. 

Apache Yarn

Apache Hadoop 2.0 includes YARN, which separates the resource management and processing components. The YARN-based architecture is not constrained to MapReduce.
  • New developmens in Hadoop 2.0 Architecture with YARN: 
  • ResourceManager instead of a cluster manager 
  • ApplicationMaster instead of a dedicated and short-lived JobTracker 
  • NodeManager instead of TaskTracker 
  • A distributed application instead of a MapReduce job 

Basic changes in Hadoop 2.0 architecture

  • The ResourceManager, the NodeManager, and a container are not concerned about the type of application or task.
  • All application framework-specific code is simply moved to its ApplicationMaster so that any distributed framework can be supported by YARN — as long as someone implements an appropriate ApplicationMaster for it.
  • Thanks to this generic approach, the dream of a Hadoop YARN cluster running many various workloads comes true. Imagine: a single Hadoop cluster in your data center that can run MapReduce, Giraph, Storm, Spark, Tez/Impala, MPI, and more.

Read More

Comments

Popular posts from this blog

How to Decode TLV Quickly

7 AWS Interview Questions asked in Infosys, TCS