Skip to main content

Featured post

5 Super SEO Blogger Tools

In this post, I have explained top blogging tools that need to be considered by every blogger. These tools help you write better SEO friendly blog posts.



1). Headline Analyzer The best tool is the EMV Headline Analyzer. When you enter the headline it analyzes it and gives you EMV ranking. When you get '50' and above it performs better SEO.

2). Headline Length Checker The usual headline length is 50 to 60 characters. Beyond that, the headline will get truncated and looks ugly for search engine users. The tool SERP Snippet Optimization Tool useful to know how it appears in the search results.

3). Free Submission to Search Engines The tool Ping-O-Matic is a nice free submission tool. After your blog post, you can submit your feed to Ping-O-Matic. It submits to search engines freely.

4). Spell and Grammar Check Another free tool is Grammarly, this tool checks your spelling and grammar mistakes. So that you can avoid small mistakes.

5). Keyword AnalyzerWordstream Keyword analyzer i…

Poor Data Quality New Job Roles in Data Quality

Data quality is on rising and important to organizations today. Since in Experian research it has found that poor data quality causing losses to the companies.

Experian research suggests companies in the UK, the US, Australia, and western Europe have poorer quality data this year than last. The credit information company’s 2015 Global Data Quality Research among 1,239 organizations found a dramatic lack of data quality “ownership”, and 29% of respondents were still cleaning their data by hand.
data quality
The number of organizations that suspect inaccurate data has jumped from 86% in 2014 to 92%. Also, respondents reckoned 26% of their data to be wrong, up from 22% in 2014 and 17% in 2013. Some 23% of respondents said this meant lost sales, up from 19% in 2013.

Boris Huard, managing director of Experian Data Quality, said: “Getting your data strategy right is vital if you want to be successful in this consumer-driven, digitalized age. 

It is encouraging that companies are increasingly switching on to the value of their data assets, with 95% of respondents stating that they feel driven to use their data to understand customer needs, find new customers or increase the value of each customer.”

Poor Data Quality costs millions of pounds to the companies. About one-third of organizations use automated systems, such as monitoring and audit technology (34%), data profiling (32%) or matching and linkage technology (31%) to clean their data. A total of 29% still use manual checking to clean their data.

Huard added: “As our Dawn of the CDO research demonstrated, a new breed of chief data officers, chief digital officers, and director of insights are emerging – new roles that have come about in response to the pressure and opportunity presented by big data.”

However, only 35% of respondents said they manage data quality by way of a single director and nearly 63% are missing a coherent, centralized approach to data quality. More than half said individual departments still go their own way with respect to data quality enforcement, and 12% described their data quality efforts as “ad hoc”.

Comments

Most Viewed

Tokenization story you need Vault based Vs Vault-less

The term tokenization refers to create a numeric or alphanumeric number in place of the original card number. It is difficult for hackers to get original card numbers.

Vault-Tokenization is a concept a Vault server create a new Token for each transaction when Customer uses Credit or Debit Card at Merchant outlets 
Let us see an example,  data analysis. Here, card numbers masked with other junk characters for security purpose.

Popular Tokenization ServersThere are two kinds of servers currently popular for implementing tokenization.
Vault-based Vault-less Video Presentation on Tokenization
Vault-based server The term vault based means both card number and token will be stored in a Table usually Teradata tables. During increasing volume of transactions, the handling of Table is a big challenge.
Every time during tokenization it stores a record for each card and its token. When you used a card multiple times, each time it generates multiple tokens. It is a fundamental concept.
So the challe…