Featured Post

Python map() and lambda() Use Cases and Examples

Image
 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work. Python map and lambda top use cases 1. Using map() with lambda The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list). Example: Doubling Numbers numbers = [ 1 , 2 , 3 , 4 , 5 ] doubled = list ( map ( lambda x: x * 2 , numbers)) print (doubled) # Output: [2, 4, 6, 8, 10] 2. Using map() to Convert Data Types Example: Converting Strings to Integers string_numbers = [ "1" , "2" , "3" , "4" , "5" ] integers = list ( map ( lambda x: int (x), string_numbers)) print (integers) # Output: [1, 2, 3, 4, 5] 3. Using map() with Multiple Iterables You can also use map() with more than one iterable. The lambda function can take multiple arguments. Example: Adding Two Lists Element-wise list1 = [ 1 , 2 , 3 ]

Machine Learning Tutorial - Part:2

Machine learning is a branch of artificial intelligence. Using computing, you will design systems. These systems to behave with AI features, from your end, you need to train them. This process is called Machine Learning. Read my part-1 if you miss it.
machine learning life cycle

The life cycle of machine learning

  • Acquisition - Collect the data 
  • Prepare - Data Cleaning and Quality 
  • Process- Run Machine Tools 
  • Report- Present the Results

Acquire Data

You can acquire data from many sources; it might be data that are held by your organization or open data from the Internet. There might be one data set, or there could be ten or more.

Cleaning of Data

You must come to accept that data will need to be cleaned and checked for quality before any processing can take place. These processes occur during the prepare phase.

Running Machine Learning Scripts

The processing phase is where the work gets done. The machine learning routines that you have created perform this phase.

Reporting

Finally, the results are presented. Reporting can happen in a variety of ways, such as reinvesting the data back into a data store or reporting the results as a spreadsheet or report.

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Python placeholder '_' Perfect Way to Use it