Skip to main content

Featured post

5 Super SEO Blogger Tools

In this post, I have explained top blogging tools that need to be considered by every blogger. These tools help you write better SEO friendly blog posts.



1). Headline Analyzer The best tool is the EMV Headline Analyzer. When you enter the headline it analyzes it and gives you EMV ranking. When you get '50' and above it performs better SEO.

2). Headline Length Checker The usual headline length is 50 to 60 characters. Beyond that, the headline will get truncated and looks ugly for search engine users. The tool SERP Snippet Optimization Tool useful to know how it appears in the search results.

3). Free Submission to Search Engines The tool Ping-O-Matic is a nice free submission tool. After your blog post, you can submit your feed to Ping-O-Matic. It submits to search engines freely.

4). Spell and Grammar Check Another free tool is Grammarly, this tool checks your spelling and grammar mistakes. So that you can avoid small mistakes.

5). Keyword AnalyzerWordstream Keyword analyzer i…

Big Data:Top Hadoop Interview Questions (1 of 5)

Looking out for Hadoop Interview Questions that are frequently asked by employers? Here is the first list of Hadoop Interview Questions which  covers HDFS…

hadoop 1 0f 5


1. What is BIG DATA?
Big Data is nothing but an assortment of such a huge and complex data that it becomes very tedious to capture, store, process, retrieve and analyze it with the help of on-hand database management tools or traditional data processing techniques.

2. Can you give some examples of Big Data?
There are many real life examples of Big Data! Facebook is generating 500+ terabytes of data per day, NYSE (New York Stock Exchange) generates about 1 terabyte of new trade data per day, a jet airline collects 10 terabytes of censor data for every 30 minutes of flying time. All these are day to day examples of  Big Data!

3. Can you give a detailed overview about the Big Data being generated by Facebook?
As of December 31, 2012, there are 1.06 billion monthly active users on facebook and 680 million mobile users. On an average, 3.2 billion likes and comments are posted every day on Facebook. 72% of web audience is on Facebook. And why not! There are so many activities going on facebook from wall posts, sharing images, videos, writing comments and liking posts, etc.  In fact, Facebook started using Hadoop in mid-2009 and was one of the initial users of Hadoop.

4. According to IBM, what are the three characteristics of Big Data?
According to IBM, the three characteristics of Big Data are:
Volume: Facebook generating 500+ terabytes of data per day.
Velocity: Analyzing 2 million records each day to identify the reason for losses.
Variety: images, audio, video, sensor data, log files, etc.

5. How Big is ‘Big Data’?
With time, data volume is growing exponentially. Earlier we used to talk about Megabytes or Gigabytes. But time has arrived when we talk about data volume in terms of terabytes, petabytes and also zettabytes! Global data volume was around 1.8ZB in 2011 and is expected to be 7.9ZB in 2015. It is also known that the global information doubles in every two years!

6. How analysis of Big Data is useful for organizations?
Effective analysis of Big Data provides a lot of business advantage as organizations will learn which areas to focus on and which areas are less important. Big data analysis provides some early key indicators that can prevent the company from a huge loss or help in grasping a great opportunity with open hands! A precise analysis of Big Data helps in decision making!

For instance, nowadays people rely so much on Facebook and Twitter before buying any product or service. All thanks to the Big Data explosion.

7. Who are ‘Data Scientists’?
Data scientists are soon replacing business analysts or data analysts. Data scientists are experts who find solutions to analyze data. Just as web analysis, we have data scientists who have good business insight as to how to handle a business challenge. Sharp data scientists are not only involved in dealing business problems, but also choosing the relevant issues that can bring value-addition to the organization.

Comments

Most Viewed

Tokenization story you need Vault based Vs Vault-less

The term tokenization refers to create a numeric or alphanumeric number in place of the original card number. It is difficult for hackers to get original card numbers.

Vault-Tokenization is a concept a Vault server create a new Token for each transaction when Customer uses Credit or Debit Card at Merchant outlets 
Let us see an example,  data analysis. Here, card numbers masked with other junk characters for security purpose.

Popular Tokenization ServersThere are two kinds of servers currently popular for implementing tokenization.
Vault-based Vault-less Video Presentation on Tokenization
Vault-based server The term vault based means both card number and token will be stored in a Table usually Teradata tables. During increasing volume of transactions, the handling of Table is a big challenge.
Every time during tokenization it stores a record for each card and its token. When you used a card multiple times, each time it generates multiple tokens. It is a fundamental concept.
So the challe…