Featured Post

Step-by-Step Guide to Reading Different Files in Python

Image
 In the world of data science, automation, and general programming, working with files is unavoidable. Whether you’re dealing with CSV reports, JSON APIs, Excel sheets, or text logs, Python provides rich and easy-to-use libraries for reading different file formats. In this guide, we’ll explore how to read different files in Python , with code examples and best practices. 1. Reading Text Files ( .txt ) Text files are the simplest form of files. Python’s built-in open() function handles them effortlessly. Example: # Open and read a text file with open ( "sample.txt" , "r" ) as file: content = file.read() print (content) Explanation: "r" mode means read . with open() automatically closes the file when done. Best Practice: Always use with to handle files to avoid memory leaks. 2. Reading CSV Files ( .csv ) CSV files are widely used for storing tabular data. Python has a built-in csv module and a powerful pandas library. Using cs...

Big Data: IBM InfoSphere BigInsights Basics

I am explaining here why you need IBM infoSphere. You all know about what is file system in Hadoop.
Hadoop is a distributed file system and data processing engine that is designed to handle extremely high volumes of data in any structure.
In simpler terms, just imagine that you've got dozens, or even hundreds (or thousands!) of individual computers racked and networked together. Each computer (often referred to as a node in Hadoop-speak) has its own processors and a dozen or so 2TB or 3TB hard disk drives.

All of these nodes are running software that unifies them into a single cluster, where, instead of seeing the individual computers, you see an extremely large volume where you can store your data.

The beauty of this Hadoop system is that you can store anything in this space: millions of digital image scans of mortgage contracts, days and weeks of security camera footage, trillions of sensor-generated log records, or all of the operator transcription notes from a call center. 

This ingestion of data, without worrying about the data model, is actually a key tenet of the NoSQL movement.

IBM InfoSphere BigInsights


BigInsights features Apache Hadoop and its related open source projects as a core component. This is informally known as the IBM Distribution for Hadoop. IBM remains committed to the integrity of these open source projects and will ensure 100 percent compatibility with them.
BigInsights is IBM Open Source for Hadoop
This fidelity to open source provides a number of benefits. For people who have developed code against other 100 percent open source–compatible distributions, their applications will also run on BigInsights, and vice versa. This open source compatibility has enabled IBM to amass over 100 partners, including dozens of software vendors, for BigInsights.

Simply put, if the software vendor uses the libraries and interfaces for open source Hadoop, they'll work with BigInsights as well.

Components in IBM Infosphere Biginsights

Hadoop (common utilities, HDFS, and the MapReduce framework)

1.0.3

Avro (data serialization)

1.6.3

Chukwa (monitoring large clustered systems)

0.5.0

Flume (data collection and aggregation)

0.9.4

HBase (real-time read and write database)

0.94.0

HCatalog (table and storage management)

0.4.0

Hive (data summarization and querying)

0.9.0

Lucene (text search)

3.3.0

Oozie (work flow and job orchestration)

3.2.0

Pig (programming and query language)

0.10.1

Sqoop (data transfer between Hadoop and databases)

1.4.1

ZooKeeper (process coordination)

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

A Beginner's Guide to Pandas Project for Immediate Practice