Featured post

Best Machine Learning Book for Beginners

You need a mixof different technologies for Data Science projects. Instead of learning many skills, just learn a few. The four main steps of any project are extracting the data, model development, artificial intelligence, and presentation. Attending interviews with many skills is not so easy. So keep the skills short.
A person with many skills can't perform all the work. You had better learn a few skills like Python, MATLAB, Tableau, and RDBMS. So that you can get a job quickly in the data-science project.
Out of Data Science skills, Machine learning is a new concept. Why because you can learn Python, like any other language. Tableau also the same. Here is the area that needs your 60% effort is Machine learning.  Machine Learning best book to start.

Related Posts How to write multiple IF-conditions in Python Simplified

Understand Data power why quality everyone wants

Information and data quality is new service work for data intense companies. I have seen not only in Analytics projects but in Mainframe projects, there is the Data Quality team.

How incorrect data impact on us

Information quality problems and their impact are all around us:
  • A customer does not receive an order because of incorrect shipping information.
  • Products are sold below cost because of wrong discount rates.
  • A manufacturing line is stopped because parts were not ordered—the result of inaccurate inventory information.
  • A well-known U.S. senator is stopped at an airport (twice) because his name is on a government "Do not fly" list.
  • Many communities cannot run an election with results that people trust.
  • Financial reform has created new legislation such as Sarbanes—Oxley. 
Incorrect data leads to many problems. The role of Data Science is to use quality data for effective decisions.

What is information

  1. Information is not simply data, strings of numbers, lists of addresses, or test results stored in a computer. Information is the product of business processes and is continuously used and reused by them. 
  2. It takes human beings to bring information to its real-world context and give it meaning. 
  3. Every day human beings use the information to make decisions, complete transactions and carry out all the other activities that make a business run. Applications come and applications go, but the information in those applications lives on.
  4. Effective business decisions and actions can only be made when based on high-quality information—the key here being effective. Yes, business decisions are based all the time on poor-quality data, but effective business decisions cannot be made with flawed, incomplete, or misleading data. 
  5. People need information they can trust to be correct and current if they are to do the work that furthers business goals and objectives.

Comments

Popular posts from this blog

Hyperledger Fabric: 20 Real Interview Questions

Best Machine Learning Book for Beginners

Python Assigning Multiple Values at Once