Skip to main content

5 Top Data warehousing Skills in the age of Big data

5 Top Data warehousing Skills in the age of Big data
#5 Top Data warehousing Skills in the age of Big data:
A data warehouse is a home for "secondhand" data that originates in either other corporate applications, such as the one your company uses to fill customer orders for its products, or some data source external to your company, such as a public database that contains sales information gathered from all your competitors.

What is Data warehousing

If your company's data warehouse were advertised as a used car, for example, it may be described this way: "Contains late-model, previously owned data, all of which has undergone a 25-point quality check and is offered to you with a brand-new warranty to guarantee hassle-free ownership."

Most organizations build a data warehouse in a relatively straightforward manner:
  • The data warehousing team selects a focus area, such as tracking and reporting the company's product sales activity against that of its competitors.
  • The team in charge of building the data warehouse assigns a group of business users and other key individuals within the company to play the role of Subject-Matter Experts. Together, these people compile a list of different types of data that enable them to use the data warehouse to help track sales activity (or whatever the focus is for the project).
  • The group then goes through the list of data, item by item, and figures out where it can obtain that particular piece of information. In most cases, the group can get it from at least one internal (within the company) database or file, such as the one the application uses to process orders by mail or the master database of all customers and their current addresses. In other cases, a piece of information is not available from within the company's computer applications but could be obtained by purchasing it from some other company. Although the credit ratings and total outstanding debt for all of a bank's customers, for example, aren't known internally, that information can be purchased from a credit bureau.
  • After completing the details of where each piece of data comes from, the data warehousing team (usually computer analysts and programmers) create extraction programs. These programs collect data from various internal databases and files, copy certain data to a staging area (a work area outside the data warehouse), ensure that the data has no errors, and then copy it all into the data warehouse. Extraction programs are created either by hand (custom-coded) or by using specialized data warehousing products.
Different roles in Data warehousing projects:

Data modeling.: Design and implementation of data models are required for both the integration and presentation repositories. Relational data models are distinctly different from dimensional data models, and each has unique properties. Moreover, relational data modelers may not have dimensional modeling expertise and vice versa.

ETL development: ETL refers to the extraction of data from source systems into staging, the transformations necessary to recast source data for analysis, and the loading of transformed data into the presentation repository. ETL includes the selection criteria to extract data from source systems, performing any necessary data transformations or derivations needed, data quality audits, and cleansing.

Data cleansing: Source data is typically not perfect. Furthermore, merging data from multiple sources can inject new data quality issues. Data hygiene is an important aspect of data warehouse that requires specific skills and techniques.

OLAP design: Typically data warehouses support some variety of online analytical processing (HOLAP, MOLAP, or ROLAP). Each OLAP technique is different but requires special design skills to balance the reporting requirements against performance constraints.

Application development: Users commonly require an application interface into the data warehouse that provides an easy-to-use front end combined with comprehensive analytical capabilities, and one that is tailored to the way the users work. This often requires some degree of custom programming or commercial application customization.

Production automation: Data warehouses are generally designed for periodic automated updates when new and modified data is slurped into the warehouse so that users can view the most recent data available. These automated update processes must have built-in fail-over strategies and must ensure data consistency and correctness.

General systems and database administration: Data warehouse developers must have many of the same skills held by the typical network administrator and database administrator. They must understand the implications of efficiently moving possibly large volumes of data across the network, and the issues of effectively storing changing data.

Comments

Popular posts from this blog

11 Top Blockchain Key Advantages to Read Now

Blockchain architecture changes the financial world in near future. Increasing population and volume of transactions cause financial crimes. Opportunities to implement Blockchain technology are Banks, Share markets, Government Bodies, and Big Corporations.  
Less maintenance and distributable made blockchain hot in the market. Why You Need BlockchainBlockchain stores each transaction in Blocks. No one can tamper or change the details. The people who are making a transaction in Blockchain world they both have same copies. No possibility of changing these records by parties involved. So it is robust.Key Advantages of BlockchainThe ledger details distributed.Distributed data available to all parties, and no one can tamper this data. Every transaction is Public. That means only people who have access can see the information. Stores all records permanently.No one can edit or manipulate the dataThe possibility is there to hack a centralized database. In Blockchain one cannot hack the data. S…

Blue Prism complete tutorials download now

Blue prism is an automation tool useful to execute repetitive tasks without human effort. To learn this tool you need the right material. Provided below quick reference materials to understand detailed elements, architecture and creating new bots. Useful if you are a new learner and trying to enter into automation career. The number one and most popular tool in automation is a Blue prism. In this post, I have given references for popular materials and resources so that you can use for your interviews.
RPA Blue Prism RPA blue prism tutorial popular resources I have given in this post. You can download quickly. Learning Blue Prism is a really good option if you are a learner of Robotic process automation.
RPA Advantages The RPA is also called "Robotic Process Automation"- Real advantages are you can automate any business process and you can complete the customer requests in less time.

The Books Available on Blue Prism 
Blue Prism resourcesDavid chappal PDF bookBlue Prism BlogsVi…

Three popular RPA tools functional differences

Robotic process automation is growing area and many IT developers across the board started up-skill in this popular area. I have written this post for the benefit of Software developers who are interested in RPA also called Robotic Process Automation.

In my previous post, I have described that total 12 tools are available in the market. Out of those 3 tools are most popular. Those are Automation anywhere, BluePrism and Uipath. Many programmers asked what are the differences between these tools. I have given differences of all these three RPA tools.

BluePrism Blue Prism has taken a simple concept, replicating user activity on the desktop, and made it enterprise strength. The technology is scalable, secure, resilient, and flexible and is supported by a comprehensive methodology, operational framework and provided as packaged software.The technology is developed and deployed within a “corridor of IT governance” and has sophisticated error handling and process modelling capabilities to ens…

R Vs SAS differences to read today

Statistical analysis should know by every software engineer. R is an open source statistical programming language. SAS is licensed analysis suite for statistics. The two are very much popular in Machine learning and data analytics projects.
SAS is analysis suite software and R is a programming language R ProgrammingR supports both statistical analysis and GraphicsR is an open source project.R is 18th most popular LanguageR packages are written in C, C++, Java, Python and.NetR is popular in Machine learning, data mining and Statistical analysis projects. SASSAS is a statistical analysis suite. Developed to process data sets in mainframe computers.Later developed to support multi-platforms. Like  Mainframe, Windows, and LinuxSAS has multiple products. SAS/ Base is very basic level.SAS is popular in data related projects. Learn SAS vs R Top Differences between SAS Vs R Programming SAS AdvantagesThe data integration from any data source is faster in SAS.The licensed software suite, so you…

Testing in DevOps to maximize Quality

Testing is the critical phase in DevOps. The process of DevOps is to speed up the deployment process. That means there are no shortcuts in testing. Covering most relevant test cases is the main thing the tester has to focus.
Requirements to Maximize QualityGood maintainable codeExhaustive coverage of casesTraining documents to Operations teamFewer bugs in the bug trackerLess complex and no redundant code Testing Activities in DevOpsThe team to use Tools to check the quality of codeStyle checker helps to correct code styleGood design avoids bugs in productionCode performance depends on the code-qualityBugs in production say poor testing  Tester Roles in DevOpsGood quality means zero bugs in production.Design requirements a base to validate testing results.Automated test scripts give quick feedback on the quality of code. Right test cases cover all the functional changes. The Bottom LineThe DevOps approach is seamless integration between Development and Operations without compromi…

Top Differences Read Today Agile vs Waterfall model

The Agile and Waterfall both models are popular in Software development. The Agile model is so flexible compared to waterfall model. Top differences on Waterfall vs Agile give you clear understanding on both the processes. Waterfall ModelThe traditional model is waterfall. It has less flexibility.Expensive and time consuming model.Less scalable to meet the demand of customer requirements.The approach is top down. Starting from requirements one has to finish all the stages, till deployment to complete one cycle.A small change in requirement, one has to follow all the stages till deployment.Waterfall model creates idleness in resource management. Agile ModelAgile model is excellent for rapid deployment of small changesThe small split-requirements you can call them as sprintsLess idleness in resource management.Scope for complete team involvement.Faster delivery makes client happy.You can deploy changes related to compliance or regulatory quickly.Collaboration improves among the team.