Featured post

3 Top Books Every Analytics Engineer to Read

Many of the analytics jobs nowadays are for the financial domain. The top financial domains are Banking, Payments, and credit cards. 
The Best Books are on:
SASUNIXPython

The skills you need to work in data analytics are SAS, UNIX, Python, and JavaScript.  I have selected three books for beginners of data analysts. 

1. SAS best book 
I found one best book that is little SAS. This post covers almost all examples and critical macros you need for your job.

The best-selling Little SAS Book just got even better. Readers worldwide study this easy-to-follow book to help them learn the basics of SAS programming.

Now Rebecca Ottesen has teamed up with the original authors, Lora Delwiche, and Susan Slaughter, to provide a new way to challenge and improve your SAS skills through thought-provoking questions, exercises, and projects.
2. UNIX best book
The basic commands you will get everywhere. The way of executing Macros or shell scripts is really you need. This is a good book so that you can automate…

How to Use ML in IoT Projects

Why you need machine learning skills? Let us start with Big data. Big data relates to extremely large and complex data. So, the availability of huge data makes machine learning is popular to use in future prediction.

6 ideas how to use ML in IoT

  1. Machine Learning comprises algorithms that learn from data, make predictions based on their learning, and have the ability to improve their outcomes with experience. Due to the enormity of data involved with Machine Learning, various technologies and frameworks have been developed to address the same. Hadoop is an open-source framework targeted for commodity hardware to address big data scale.
  2. The distributed design of the Hadoop framework makes it an excellent fit to crunch data and draw insights from it by unleashing Machine Learning algorithms on it. 
  3. So, the true value of IoT comes from ubiquitous sensors’ relaying of data in real-time, getting that data over to Hadoop clusters in a central processing unit, absorbing the same, and performing Machine Learning on data to draw insights; all at petabyte scale or more.
  4. In reviewing the use cases and challenges from preceding sections, one thing is very clear. That is to do with the quickness with which certain analytics must be performed. Imagine sending a critical alert late because computing could not be done any faster. Two key gaps here include absorbing incoming data at such a high rate reliably and in observing that Hadoop was not created for real-time streaming data.
  5. It was originally envisaged as a framework for batch processing. Innovators have responded to those challenges well. Let us review some of those technologies now.
  6. SAP HANA with the internet of things came into the picture with real-time processing of data compared to Hadoop which is only batch processing. 
Also Read:

Comments

Popular posts from this blog

Quick Comparison AWS Vs Azure Load Balancer

Hyperledger Fabric: 20 Real Interview Questions

10 Best Visualization Charts to Present data

JavaScript Vs JSON Top Differences