Featured post

3 Top Books Every Analytics Engineer to Read

Many of the analytics jobs nowadays are for the financial domain. The top financial domains are Banking, Payments, and credit cards. 
The Best Books are on:
SASUNIXPython

The skills you need to work in data analytics are SAS, UNIX, Python, and JavaScript.  I have selected three books for beginners of data analysts. 

1. SAS best book 
I found one best book that is little SAS. This post covers almost all examples and critical macros you need for your job.

The best-selling Little SAS Book just got even better. Readers worldwide study this easy-to-follow book to help them learn the basics of SAS programming.

Now Rebecca Ottesen has teamed up with the original authors, Lora Delwiche, and Susan Slaughter, to provide a new way to challenge and improve your SAS skills through thought-provoking questions, exercises, and projects.
2. UNIX best book
The basic commands you will get everywhere. The way of executing Macros or shell scripts is really you need. This is a good book so that you can automate…

Top Apache HIVE excellent built-in features for Big data

Top Apache HIVE excellent built-in features for Big data
#Top Apache HIVE excellent built-in features for Big data:
Apache Hive aids examination of great datasets kept in Hadoop’s HDFS and harmonious file setups such like Amazon S3 filesystem.

It delivers an SQL-like lingo named when keeping complete aid aimed at map/reduce. To accelerate requests, it delivers guides, containing bitmap guides.

By preset, Hive stores metadata in an implanted Apache Derby database, and different client/server databases like MySQL may optionally be applied.

Currently, there are 4 file setups maintained in Hive, that are TEXTFILE, SEQUENCE FILE, ORC and RCFILE.

Other attributes of Hive include:

  • Indexing to supply quickening, directory sort containing compacting and Bitmap directory as of 0.10, further directory kinds are designed.
  • Different depository kinds such like simple written material, RCFile, HBase, ORC, and other ones.
  • Metadata depository in an RDBMS, notably decreasing the time to accomplish verbal examines throughout request implementation.
  • Operating on compressed information kept in to Hadoop environment, set of rules containing gzip, bzip2, snappy, etcetera.
  • Built-in exploiter described purposes (UDFs) to manipulate dates, cords, and different data-mining implements. Hive aids expanding the UDF set to cover use-cases not maintained by integrated purposes.
  • SQL-like requests (Hive QL), that are completely changed in to map-reduce appointments.

Comments

Popular posts from this blog

Quick Comparison AWS Vs Azure Load Balancer

Hyperledger Fabric: 20 Real Interview Questions

10 Best Visualization Charts to Present data

JavaScript Vs JSON Top Differences