Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

Aws QuickSight quick tutorial

aws quicksight

Amazon QuickSight is a very fast, cloud-powered business intelligence (BI) service that makes it easy for all employees to build visualizations, perform ad-hoc analysis, and quickly get business insights from their data.

Amazon QuickSight Architecture uses a new, Super-fast, Parallel, In-memory Calculation Engine (“SPICE”) to perform advanced calculations and render visualizations rapidly.

Amazon QuickSight integrates automatically with AWS data services, enables organizations to scale to hundreds of thousands of users, and delivers fast and responsive query performance to them via SPICE’s query engine.

At one-tenth the cost of traditional solutions, Amazon QuickSight enables you to deliver rich BI functionality to everyone in your organization.

  1. Easily connect Amazon QuickSight to AWS data services, including Amazon Redshift, Amazon RDS, Amazon Aurora, Amazon EMR, Amazon DynamoDB, Amazon S3, and Amazon Kinesis; upload CSV, TSV and spreadsheet files; or connect to third-party data sources such as Salesforce.
  2. Amazon QuickSight automatically infers data types and relationships and provides suggestions for the best possible visualizations, optimized for your data, to help you get quick, actionable business insights.
  3. Amazon QuickSight uses SPICE – a Super-fast, Parallel, In-memory optimized Calculation Engine built from the ground up to generate answers on large datasets.
  4. Securely share your analysis with others in your organization by building interactive stories for collaboration using the storyboard and annotations. 
  5. Recipients can further explore the data and respond back with their insights and knowledge, making the whole organization efficient and effective.

Related: AWS - Cloud computing online Training

Amazon QuickSight provides partners a simple SQL-like interface to query the data stored in SPICE so that customers can continue using their existing BI tools from AWS BI Partners while benefiting from the faster performance delivered by SPICE.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)