Skip to main content

Top requirements for successful MapReduce jobs

The following techniques are needed to be successful of your map reduce jobs:
  • The mapper must be able to ingest the input and process the input record, sending forward the records that can be passed to the reduce task or to the final output directly, if no reduce step is required.
Mapreduce Jobs in Hadoop
Hadoop-MapReduce
  • The reducer must be able to accept the key and value groups that passed through the mapper, and generate the final output of this MapReduce step.
  • The job must be configured with the location and type of the input data, the mapper class to use, the number of reduce tasks required, and the reducer class and I/O types.
  • The TaskTracker service will actually run your map and reduce tasks, and the JobTracker service will distribute the tasks and their input split to the various trackers.
  • The cluster must be configured with the nodes that will run the TaskTrackers, and with the number of TaskTrackers to run per node. The TaskTrackers need to be configured with the JVM parameters, including the classpath for both the TaskTracker and the JVMs that will execute the individual tasks.
  • There are three levels of configuration to address to configure MapReduce on your cluster. From the bottom up, you need to configure the machines, the Hadoop MapReduce framework, and the jobs themselves.
Read more:

Comments

Popular posts from this blog

R Vs SAS differences to read today

Statistical analysis should know by every software engineer. R is an open source statistical programming language. SAS is licensed analysis suite for statistics. The two are very much popular in Machine learning and data analytics projects.
SAS is analysis suite software and R is a programming language R ProgrammingR supports both statistical analysis and GraphicsR is an open source project.R is 18th most popular LanguageR packages are written in C, C++, Java, Python and.NetR is popular in Machine learning, data mining and Statistical analysis projects. SASSAS is a statistical analysis suite. Developed to process data sets in mainframe computers.Later developed to support multi-platforms. Like  Mainframe, Windows, and LinuxSAS has multiple products. SAS/ Base is very basic level.SAS is popular in data related projects. Learn SAS vs R Top Differences between SAS Vs R Programming SAS AdvantagesThe data integration from any data source is faster in SAS.The licensed software suite, so you…

Blue Prism complete tutorials download now

Blue prism is an automation tool useful to execute repetitive tasks without human effort. To learn this tool you need the right material. Provided below quick reference materials to understand detailed elements, architecture and creating new bots. Useful if you are a new learner and trying to enter into automation career. The number one and most popular tool in automation is a Blue prism. In this post, I have given references for popular materials and resources so that you can use for your interviews.
RPA Blue Prism RPA blue prism tutorial popular resources I have given in this post. You can download quickly. Learning Blue Prism is a really good option if you are a learner of Robotic process automation.
RPA Advantages The RPA is also called "Robotic Process Automation"- Real advantages are you can automate any business process and you can complete the customer requests in less time.

The Books Available on Blue Prism 
Blue Prism resourcesDavid chappal PDF bookBlue Prism BlogsVi…

Top Differences Read Today Agile vs Waterfall model

The Agile and Waterfall both models are popular in Software development. The Agile model is so flexible compared to waterfall model. Top differences on Waterfall vs Agile give you clear understanding on both the processes. Waterfall ModelThe traditional model is waterfall. It has less flexibility.Expensive and time consuming model.Less scalable to meet the demand of customer requirements.The approach is top down. Starting from requirements one has to finish all the stages, till deployment to complete one cycle.A small change in requirement, one has to follow all the stages till deployment.Waterfall model creates idleness in resource management. Agile ModelAgile model is excellent for rapid deployment of small changesThe small split-requirements you can call them as sprintsLess idleness in resource management.Scope for complete team involvement.Faster delivery makes client happy.You can deploy changes related to compliance or regulatory quickly.Collaboration improves among the team.