Skip to main content

The awesome points to learn from DB2 NoSQL GraphStore

The awesome points to learn from db2 graphstore
 #db2 graphstore:
One best example, prior to understanding the RDF format for Graph data modelIf the graph data model is the model the semantic web uses to store data, RDF is the format in which it is written. 


Summary of DB2 Graph Store:
  • DB2-RDF support is officially called "NoSQL Graph Support".  
  • The API extends the Jena API (Graph layer).  Developers familiar with Jena TDB will have the Model layer capabilities they are accustomed to.
  • Although the DB2-RDF functionality is being released with DB2 LUW 10.1, it is also compatible with DB2 9.7.
  • Full supports for SPARQL 1.0 and a subset of SPARQL 1.1.  Full SPARQL 1.1 support (which is till a W3C working draft) will be forthcoming.
  • While RDBMS implementations of RDF graphs have typically been non-performant, that is not the case here*.  Some very impressive and innovative work has been put into optimization capabilities.  Out-of-the box performance is comparable with native triple stores, and read/write performance in the optimized schema has been seen to surpass these speeds.
Related: Presentation on DB2 NoSQL Graph Store

What is RDF data model(ref:wiki)

The RDF data model is similar to classical conceptual modeling approaches such as entity–relationship or class diagrams, as it is based upon the idea of making statements about resources (in particular web resources) in the form of subject–predicate–object expressions.  


These expressions are known as triples in RDF terminology. The subject denotes the resource, and the predicate denotes traits or aspects of the resource and expresses a relationship between the subject and the object. For example, one way to represent the notion "The sky has the color blue" in RDF is as the triple: a subject denoting "the sky", a predicate denoting "has", and an object denoting "the color blue". Therefore, RDF swaps object for subject that would be used in the classical notation of an entity–attribute–value model within object-oriented design; Entity (sky), attribute (color) and value (blue). RDF is an abstract model with several serialization formats (i.e., file formats), and so the particular way in which a resource or triple is encoded varies from format to format. 


This mechanism for describing resources is a major component in the W3C's Semantic Web activity: an evolutionary stage of the World Wide Web in which automated software can store, exchange, and use machine-readable information distributed throughout the Web, in turn enabling users to deal with the information with greater efficiency and certainty. 

RDF's simple data model and ability to model disparate, abstract concepts has also led to its increasing use in knowledge management applications unrelated to Semantic Web activity. 
A collection of RDF statements intrinsically represents a labeled, directed multi-graph. As such, an RDF-based data model is more naturally suited to certain kinds of knowledge representation than the relational model and other ontological models. However, in practice, RDF data is often persisted in relational database or native representations also called Triplestores, or Quad stores if context (i.e. the named graph) is also persisted for each RDF triple.[3] ShEX, or Shape Expressions,[4] is a language for expressing constraints on RDF graphs. It includes the cardinality constraints from OSLC Resource Shapes and Dublin Core Description Set Profiles as well as logical connectives for disjunction and polymorphism. As RDFS and OWL demonstrate, one can build additional ontology languages upon RDF.

Related:

Comments

Popular posts from this blog

Blue Prism complete tutorials download now

Blue prism is an automation tool useful to execute repetitive tasks without human effort. To learn this tool you need the right material. Provided below quick reference materials to understand detailed elements, architecture and creating new bots. Useful if you are a new learner and trying to enter into automation career. The number one and most popular tool in automation is a Blue prism. In this post, I have given references for popular materials and resources so that you can use for your interviews.
RPA Blue Prism RPA blue prism tutorial popular resources I have given in this post. You can download quickly. Learning Blue Prism is a really good option if you are a learner of Robotic process automation.
RPA Advantages The RPA is also called "Robotic Process Automation"- Real advantages are you can automate any business process and you can complete the customer requests in less time.

The Books Available on Blue Prism 
Blue Prism resourcesDavid chappal PDF bookBlue Prism BlogsVi…

Hyperledger Fabric Real Interview Questions Read Today

I am practicing Hyperledger. This is one of the top listed blockchains. This architecture follows R3 Corda specifications. Sharing the interview questions with you that I have prepared for my interview.

Though Ethereum leads in the real-time applications. The latest Hyperledger version is now ready for production applications. It has now become stable for production applications.
The Hyperledger now backed by IBM. But, it is still an open source. These interview questions help you to read quickly. The below set of interview questions help you like a tutorial on Hyperledger fabric. Hyperledger Fabric Interview Questions1). What are Nodes?
In Hyperledger the communication entities are called Nodes.

2). What are the three different types of Nodes?
- Client Node
- Peer Node
- Order Node
The Client node initiates transactions. The peer node commits the transaction. The order node guarantees the delivery.

3). What is Channel?
A channel in Hyperledger is the subnet of the main blockchain. You c…

Data analysis tools top demand in the job market to read today

Data analytics is the job role hot in demand in each organization. The digital skills such as Mobile development, Full stack development, and Data Science, and Cloud computing are successful because those are very user-friendly to the end users.
Predictive Analytics Digital devices enabled with digital technologies cause to generate more data. You need different kinds of tools to analyze data of different format.

You need the right tools. Else you cannot predict user mind. User search data is the source for big retail markets. Based on these search words, they start selling the products.

The motto behind data analytics is to get the benefit to all stakeholders.
Cloud Computing Let us take a cloud computing the main advantage is cost-effective and scalability. Top Data Analytics Tools in DemandR ProgrammingSASExcelTableauQlikViewTop Magazines in Data AnalyticsAnalytics InsightAnalytics MagazineAnalytics India Magazine Related PostsR Vs SAS Top Differences6 Top IT Skills that have Huge D…

Three popular RPA tools functional differences

Robotic process automation is growing area and many IT developers across the board started up-skill in this popular area. I have written this post for the benefit of Software developers who are interested in RPA also called Robotic Process Automation.

In my previous post, I have described that total 12 tools are available in the market. Out of those 3 tools are most popular. Those are Automation anywhere, BluePrism and Uipath. Many programmers asked what are the differences between these tools. I have given differences of all these three RPA tools.

BluePrism Blue Prism has taken a simple concept, replicating user activity on the desktop, and made it enterprise strength. The technology is scalable, secure, resilient, and flexible and is supported by a comprehensive methodology, operational framework and provided as packaged software.The technology is developed and deployed within a “corridor of IT governance” and has sophisticated error handling and process modelling capabilities to ens…

R Vs SAS differences to read today

Statistical analysis should know by every software engineer. R is an open source statistical programming language. SAS is licensed analysis suite for statistics. The two are very much popular in Machine learning and data analytics projects.
SAS is analysis suite software and R is a programming language R ProgrammingR supports both statistical analysis and GraphicsR is an open source project.R is 18th most popular LanguageR packages are written in C, C++, Java, Python and.NetR is popular in Machine learning, data mining and Statistical analysis projects. SASSAS is a statistical analysis suite. Developed to process data sets in mainframe computers.Later developed to support multi-platforms. Like  Mainframe, Windows, and LinuxSAS has multiple products. SAS/ Base is very basic level.SAS is popular in data related projects. Learn SAS vs R Top Differences between SAS Vs R Programming SAS AdvantagesThe data integration from any data source is faster in SAS.The licensed software suite, so you…

6 Top IT Skills that have Huge demand for the next 5 Years

These are top IT skills you need to know. Also, these are highly employable skills. These you can say as digital skills. Digital skills fetch you best salary, according to surveys by top job portals.
6 Top IT SKillsSAS and R ProgrammingFull stack developmentData EngineeringData ScineceMobile development - Perl, Ruby and PythonMiddleware integration software.The Bottom LineThe trend is now changed. You can attend off-line and On-line courses and you can practices daily two hours.Within 2 or 3 months you can be perfect.Select any one skill for your employability.You cannot learn all the skills. It is dofficult to tell answers in the interviews.