Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

3 best Self Study Materials on Spark Mlib

Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala and Python, and an optimized engine that supports general execution graphs. An execution graph describes the possible states of execution and the states between them. Spark also supports a set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.

Spark Overview with self study material
#Spark  
Review of Spark Machine Language Library (MLlib): MLlib is Spark's machine learning library, focusing on learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as underlying optimization primitives.
Why MLlib? It is built on Apache Spark, which is a fast and general engine for large scale processing. Supposedly, running times or up to 100x faster than Hadoop MapReduce, or 10x faster on disk. Supports writing applications in Java, Scala, or Python.

References:

Comments

Popular posts from this blog

How to Decode TLV Quickly

7 AWS Interview Questions asked in Infosys, TCS