Featured Post

How to Check Column Nulls and Replace: Pandas

Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

AWS EMR Vs. Hadoop: 5 Top Differences

With Amazon Elastic MapReduce Amazon EMR, you can analyze and process vast amounts of data. It distributes the computational work across a cluster of virtual servers ( run in the Amazon cloud). An open-source framework of Hadoop manages it. 

AWS EMR Vs. Hadoop

Amazon EMR - Elastic MapReduce, The Unique Features

  • Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS.
  • For instance, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.
  • Also, you can move data into and out of DynamoDB using Amazon EMR and Hive. That orchestrates by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.

What does Hadoop do?

Hadoop uses a distributed processing architecture called MapReduce, in which a task maps to a set of servers for processing.

  • The results of the computation performed by those servers reduce to a single output set.
  • One node, designated as the master node, controls the distribution of tasks. The following diagram shows a Hadoop cluster with the master node directing a group of slave nodes which process the data.
  • One Master node handles multiple slave nodes. All open-source projects run on the Hadoop architecture can also be run on Amazon EMR. The most popular applications, such as Hive, Pig, HBase, DistCp, and Ganglia, are already integrated with Amazon EMR.

By running Hadoop on the Amazon EMR, you will get the following benefits of the cloud:

  1. The ability to provision clusters of virtual servers within minutes.
  2. You can scale the number of virtual servers in your cluster to manage your computation needs and only pay for what you use. 
  3. Integration with other AWS services.


Popular posts from this blog

Explained Ideal Structure of Python Class

How to Check Kafka Available Brokers

6 Python file Methods Real Usage