Featured Post

Step-by-Step Guide to Reading Different Files in Python

Image
 In the world of data science, automation, and general programming, working with files is unavoidable. Whether you’re dealing with CSV reports, JSON APIs, Excel sheets, or text logs, Python provides rich and easy-to-use libraries for reading different file formats. In this guide, we’ll explore how to read different files in Python , with code examples and best practices. 1. Reading Text Files ( .txt ) Text files are the simplest form of files. Python’s built-in open() function handles them effortlessly. Example: # Open and read a text file with open ( "sample.txt" , "r" ) as file: content = file.read() print (content) Explanation: "r" mode means read . with open() automatically closes the file when done. Best Practice: Always use with to handle files to avoid memory leaks. 2. Reading CSV Files ( .csv ) CSV files are widely used for storing tabular data. Python has a built-in csv module and a powerful pandas library. Using cs...

A Quick guide to Amazon RDS

Amazon Aurora is a MySQL-compatible relational database management system (RDBMS) that combines the speed and availability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases.

It provides up to 5X the performance of MySQL at one tenth the cost of a commercial database. Amazon Aurora allows you to encrypt data at rest as well as in transit for your mission-critical workloads.

Key points on Amazon Aurora


  1. Amazon Aurora is a relational database engine that combines the speed and reliability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases. It delivers up to five times the throughput of standard MySQL running on the same hardware.
  2. Amazon Aurora is designed to be compatible with MySQL 5.6, so that existing MySQL applications and tools can run without requiring modification. 
  3. Amazon Aurora joins MySQL, Oracle, Microsoft SQL Server, and PostgreSQL as the fifth database engine available to customers through Amazon RDS. 
  4. Amazon RDS handles time-consuming tasks such as provisioning, patching, backup, recovery, failure detection, and repair. You pay a simple monthly charge for each Amazon Aurora database instance you use. There are no upfront costs or long-term commitments.

What is RDS on Amazon Aurora

Amazon RDS makes it easy to manage your Amazon Aurora database by automating most of the common administrative tasks associated with running a database. 

With a few clicks in the AWS Management Console, you can quickly launch an Amazon Aurora database instance. Amazon Aurora scales storage automatically, growing storage and rebalancing I/Os to provide consistent performance without the need for over-provisioning.

For example, you can start with a database of 10GB and have it automatically grow up to 64TB without requiring availability disruptions to resize or restripe data.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)