Featured Post

Python Regex: The 5 Exclusive Examples

Image
 Regular expressions (regex) are powerful tools for pattern matching and text manipulation in Python. Here are five Python regex examples with explanations: 01 Matching a Simple Pattern import re text = "Hello, World!" pattern = r"Hello" result = re.search(pattern, text) if result:     print("Pattern found:", result.group()) Output: Output: Pattern found: Hello This example searches for the pattern "Hello" in the text and prints it when found. 02 Matching Multiple Patterns import re text = "The quick brown fox jumps over the lazy dog." patterns = [r"fox", r"dog"] for pattern in patterns:     if re.search(pattern, text):         print(f"Pattern '{pattern}' found.") Output: Pattern 'fox' found. Pattern 'dog' found. It searches for both "fox" and "dog" patterns in the text and prints when they are found. 03 Matching Any Digit   import re text = "The price of the

Quick Guide: Machine Learning Examples and Uses

Machine learning

I want to share with you the best real-time examples on machine learning. Because of new computing technologies, machine learning today is not like machine learning of the past. 

While many machine learning algorithms have been around for a long time, the ability to automatically apply complex mathematical calculations to big data – over and over, faster and faster – is a recent development.

Machine learning use cases
  • The heavily hyped, self-driving Google car? The essence of machine learning. 
  • Online recommendation offers like those from Amazon and Netflix? Machine learning applications for everyday life. 
  • Knowing what customers are saying about you on Twitter? Machine learning combined with linguistic rule creation. 
  • Fraud detection? One of the more obvious, important uses in our world today.
Best example: "pattern recognition" is best example for Machine Learning
Where can you apply machine learning. The following are the key areas you can apply machine learning.
  1. Fraud detection.
  2. Web search results.
  3. Real-time ads on web pages and mobile devices.
  4. Text-based sentiment analysis.
  5. Credit scoring and next-best offers.
  6. Prediction of equipment failures.
  7. New pricing models.
  8. Network intrusion detection.
  9. Pattern and image recognition.
  10. Email spam filtering.

Comments

Popular posts from this blog

Explained Ideal Structure of Python Class

6 Python file Methods Real Usage

How to Decode TLV Quickly