Skip to main content

How to write R Script in simple way

A script is a good way to keep track of what you're doing. If you have a long analysis, and you want to be able to recreate it later, a good idea is to type it into a script. If you're working in the Windows R GUI (also in the Mac R GUI), there is even a built-in script editor.

#How-to-write-RScript:
Photo credit: Srini
To get to it, pull down the File menu and choose New Script (New Document on a Mac). A window will open in which you can type your script. R Script is a series of commands that you can execute at one time and you can save a lot of time. the script is just a plain text file with R commands in it.

How to create an R Script

  1. You can prepare a script in any text editor, such as vim, TextWrangler, or Notepad.
  2. You can also prepare a script in a word processor, like Word, Writer, TextEdit, or WordPad, PROVIDED you save the script in plain text (ASCII) format.
  3. This should (!) append a ".txt" file extension to the file.
  4. Drop the script into your working directory, and then read it into R using the source() function.
  5. Just put the .txt file into your working directory
  6. Now that you've got it in your working directory one way or another, do this in R.
> source(file = "sample_script.txt") # Don't forget those quotes!
A note: This may not have worked. And the reason for that is, your script may not have had the name "sample_script.txt".
if you make sure the file has the correct name, R will read it. If the file is in your working directory, type dir() at the command prompt, and R will show you the full file name.
Also, R does not like spaces in script names, so don't put spaces in your script names! (In newer versions of R, this is no longer an issue.)

What is all about the script you have written

Example:
# A comment: this is a sample script.
y=c(12,15,28,17,18)
x=c(22,39,50,25,18)
mean(y)
mean(x)
plot(x,y)
What happened to the mean of "y" and the mean of "x"?
The script has created the variables "x" and "y" in your workspace (and has erased any old objects you had by that name).
You can see them with the ls( ) function.

Executing a script does everything typing those commands in the Console would do, EXCEPT print things to the Console. Do this.

> x
[1] 22 39 50 25 18
> mean(x)
[1] 30.8
See? It's there. But if you want to be sure a script will print it to the Console, you should use the print() function.
> print(x)
[1] 22 39 50 25 18
> print(mean(x))
[1] 30.8
When you're working in the Console, the print() is understood (implicit) when you type a command or data object name. This is not necessarily so in a script.
  • Hit the Enter key after the last line. Now, in the editor window, pull down the Edit menu and choose Run All. (On a Mac, highlight all the lines of the script and choose Execute.) The script should execute in your R Console.
  • Pull down the File Menu and choose Save As... Give the file a nice name, like "script2.txt". R will NOT save it by default with a file extension, so be sure you give it one. (Note: On my Mac, the script editor in R will not let me save the script with a .txt extension. It insists that I use .R. Fine!) Close the editor window. Now, in the R Console, do this:
> source(file = "script2.txt") # or source(file = "script2.R") if that's how you saved it
The "aov.out" object was created in your workspace. However, nothing was echoed to your Console because you didn't tell it to print().
Go to File and choose New Script (New Document on a Mac). In the script editor, pull down File and choose Open Script... (Open Document... on a Mac). In the Open Script dialog that appears, change Files Of Type to all files (not necessary on a Mac). Then choose to open "script2.txt" (or "script2.R", whatever!). Edit it to look like this.
print(with(PlantGrowth, tapply(weight, group, mean)))
with(PlantGrowth, aov(weight ~ group)) -> aov.out
print(summary.aov(aov.out))
print(summary.lm(aov.out))
Pull down File and choose Save. Close the script editor window(s). And FINALLY...
> source(file = "script2.txt") # or source(file = "script2.R") if necessary
Finally, writing scripts is simple.

Comments

Popular posts from this blog

Blue Prism complete tutorials download now

Blue prism is an automation tool useful to execute repetitive tasks without human effort. To learn this tool you need the right material. Provided below quick reference materials to understand detailed elements, architecture and creating new bots. Useful if you are a new learner and trying to enter into automation career. The number one and most popular tool in automation is a Blue prism. In this post, I have given references for popular materials and resources so that you can use for your interviews.
RPA Blue Prism RPA blue prism tutorial popular resources I have given in this post. You can download quickly. Learning Blue Prism is a really good option if you are a learner of Robotic process automation.
RPA Advantages The RPA is also called "Robotic Process Automation"- Real advantages are you can automate any business process and you can complete the customer requests in less time.

The Books Available on Blue Prism 
Blue Prism resourcesDavid chappal PDF bookBlue Prism BlogsVi…

Hyperledger Fabric Real Interview Questions Read Today

I am practicing Hyperledger. This is one of the top listed blockchains. This architecture follows R3 Corda specifications. Sharing the interview questions with you that I have prepared for my interview.

Though Ethereum leads in the real-time applications. The latest Hyperledger version is now ready for production applications. It has now become stable for production applications.
The Hyperledger now backed by IBM. But, it is still an open source. These interview questions help you to read quickly. The below set of interview questions help you like a tutorial on Hyperledger fabric. Hyperledger Fabric Interview Questions1). What are Nodes?
In Hyperledger the communication entities are called Nodes.

2). What are the three different types of Nodes?
- Client Node
- Peer Node
- Order Node
The Client node initiates transactions. The peer node commits the transaction. The order node guarantees the delivery.

3). What is Channel?
A channel in Hyperledger is the subnet of the main blockchain. You c…

Data analysis tools top demand in the job market to read today

Data analytics is the job role hot in demand in each organization. The digital skills such as Mobile development, Full stack development, and Data Science, and Cloud computing are successful because those are very user-friendly to the end users.
Predictive Analytics Digital devices enabled with digital technologies cause to generate more data. You need different kinds of tools to analyze data of different format.

You need the right tools. Else you cannot predict user mind. User search data is the source for big retail markets. Based on these search words, they start selling the products.

The motto behind data analytics is to get the benefit to all stakeholders.
Cloud Computing Let us take a cloud computing the main advantage is cost-effective and scalability. Top Data Analytics Tools in DemandR ProgrammingSASExcelTableauQlikViewTop Magazines in Data AnalyticsAnalytics InsightAnalytics MagazineAnalytics India Magazine Related PostsR Vs SAS Top Differences6 Top IT Skills that have Huge D…

Three popular RPA tools functional differences

Robotic process automation is growing area and many IT developers across the board started up-skill in this popular area. I have written this post for the benefit of Software developers who are interested in RPA also called Robotic Process Automation.

In my previous post, I have described that total 12 tools are available in the market. Out of those 3 tools are most popular. Those are Automation anywhere, BluePrism and Uipath. Many programmers asked what are the differences between these tools. I have given differences of all these three RPA tools.

BluePrism Blue Prism has taken a simple concept, replicating user activity on the desktop, and made it enterprise strength. The technology is scalable, secure, resilient, and flexible and is supported by a comprehensive methodology, operational framework and provided as packaged software.The technology is developed and deployed within a “corridor of IT governance” and has sophisticated error handling and process modelling capabilities to ens…

R Vs SAS differences to read today

Statistical analysis should know by every software engineer. R is an open source statistical programming language. SAS is licensed analysis suite for statistics. The two are very much popular in Machine learning and data analytics projects.
SAS is analysis suite software and R is a programming language R ProgrammingR supports both statistical analysis and GraphicsR is an open source project.R is 18th most popular LanguageR packages are written in C, C++, Java, Python and.NetR is popular in Machine learning, data mining and Statistical analysis projects. SASSAS is a statistical analysis suite. Developed to process data sets in mainframe computers.Later developed to support multi-platforms. Like  Mainframe, Windows, and LinuxSAS has multiple products. SAS/ Base is very basic level.SAS is popular in data related projects. Learn SAS vs R Top Differences between SAS Vs R Programming SAS AdvantagesThe data integration from any data source is faster in SAS.The licensed software suite, so you…

6 Top IT Skills that have Huge demand for the next 5 Years

These are top IT skills you need to know. Also, these are highly employable skills. These you can say as digital skills. Digital skills fetch you best salary, according to surveys by top job portals.
6 Top IT SKillsSAS and R ProgrammingFull stack developmentData EngineeringData ScineceMobile development - Perl, Ruby and PythonMiddleware integration software.The Bottom LineThe trend is now changed. You can attend off-line and On-line courses and you can practices daily two hours.Within 2 or 3 months you can be perfect.Select any one skill for your employability.You cannot learn all the skills. It is dofficult to tell answers in the interviews.