Featured Post

Python map() and lambda() Use Cases and Examples

Image
 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work. Python map and lambda top use cases 1. Using map() with lambda The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list). Example: Doubling Numbers numbers = [ 1 , 2 , 3 , 4 , 5 ] doubled = list ( map ( lambda x: x * 2 , numbers)) print (doubled) # Output: [2, 4, 6, 8, 10] 2. Using map() to Convert Data Types Example: Converting Strings to Integers string_numbers = [ "1" , "2" , "3" , "4" , "5" ] integers = list ( map ( lambda x: int (x), string_numbers)) print (integers) # Output: [1, 2, 3, 4, 5] 3. Using map() with Multiple Iterables You can also use map() with more than one iterable. The lambda function can take multiple arguments. Example: Adding Two Lists Element-wise list1 = [ 1 , 2 , 3 ]

Why Learning Python is so useful?

Why Learning Python is so useful?

I have recently started learning Python. During my learning time, my friends have asked since you are interested in analytics why you need to learn Python. I explained the below reasons. This is one of the powerful languages after Java.

Python is similar to many programming languages that people generally know about: 

Python is very similar to JavaScript, Ruby, and PHP in many respects. 

Most programmers have a working knowledge of these programming languages and this makes it easier for programmers to learn Python. The basic features of these languages such as the use of arrays, anonymous functions, etc., are also present in Python. 

 
1. Python Machine Learning Libraries:

The variety of machine learning libraries that are available in Python is large.

One can choose between Scikitlearn, Keras, Theano, and Tensorflow. Many neural network libraries such as Keras, Theano, etc., are exclusively available in Python. So, if you want to do cutting edge machine learning work, you must know Python.

 
2. Python Handles Text Data: 

Unlike statistical software environments such as R, Python excels at handling text data. People who know Python can easily mine text corpus for useful insights. 


Python also provides support for Natural Language Processing through NLTK and sPacy
Python makes distributed computing very easy: Apache Spark has a Python API called PySpark. Using this piece of software, one can easily do distributed computing. PySpark has in recent times become the de-facto API for Spark. 


Extensive support for different data sources: It doesn’t matter if one needs to fetch data from an SQL server, a MongoDB database, or JSON data from some web API; Python can easily support all these data sources with a very clean and elegant syntax. 

3. Benefits of Learning Python

  • Learning Python has many advantages – it gives a user many skills, one can fetch data from different sources, create machine learning models, and do distributed computing seamlessly. 

  • For any programmer, learning Python will not be a difficult task. One can reap a lot of benefits by devoting time to learning Python.

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Python placeholder '_' Perfect Way to Use it