Skip to main content

Hadoop real story to process unstructured data

Hadoop real process
Hadoop Real Process
Hadoop comes into picture to process large volume of Unstructured data. The structured data is already taken care by traditional databases.

Role of traditional databases

Traditional relational databases have been able to store massive data sets for a long time. An Oracle 10g database can store over 8 Petabytes while for many years DB2 databases have been capable of storing well over 500 Petabytes. Of course, this is all theoretical. 

  • No customer has an Oracle or DB2 database that approaches sizes even close to that. Why? Because the speed, or velocity, at which data can be loaded and queries can be executed approaches zero well before then.
  • Similarly, all traditional relational databases can store any variety of data as text or binary large objects. The problem is that large volumes of unstructured data cannot be moved fast enough to enable rapid search and retrieval.

ETL role in the age of Hadoop

Running constant and predictable workloads is what your existing data warehouse has been all about. And as a solution for meeting the demands of structured data—data that can be entered, stored, queried, and analyzed in a simple and straightforward manner—the data warehouse will continue to be a viable solution. Storing, managing and analyzing massive volumes of semi-structured and unstructured data is what Hadoop was purpose-built to do.

  • Unlike structured data, found within the tidy confines of records, spreadsheets and files, semi-structured and unstructured data is raw, complex, and pours in from multiple sources such as emails, text documents, videos, photos, social media posts, Twitter feeds, sensors and clickstreams.
  •  Hadoop and MapReduce enable organizations to distribute the search simultaneously across many machines, reducing the time to find relevant nuggets of information in large volumes of data in a scalable way. That’s why Hadoop is being adopted by bleeding edge enterprises moving into the multi-petabyte club. There are already some environments that break the 100 Petabyte level, and theoretically can continue to scale.
Also read

Comments

Popular posts from this blog

11 Top Blockchain Key Advantages to Read Now

Blockchain architecture changes the financial world in near future. Increasing population and volume of transactions cause financial crimes. Opportunities to implement Blockchain technology are Banks, Share markets, Government Bodies, and Big Corporations.  
Less maintenance and distributable made blockchain hot in the market. Why You Need BlockchainBlockchain stores each transaction in Blocks. No one can tamper or change the details. The people who are making a transaction in Blockchain world they both have same copies. No possibility of changing these records by parties involved. So it is robust.Key Advantages of BlockchainThe ledger details distributed.Distributed data available to all parties, and no one can tamper this data. Every transaction is Public. That means only people who have access can see the information. Stores all records permanently.No one can edit or manipulate the dataThe possibility is there to hack a centralized database. In Blockchain one cannot hack the data. S…

Blue Prism complete tutorials download now

Blue prism is an automation tool useful to execute repetitive tasks without human effort. To learn this tool you need the right material. Provided below quick reference materials to understand detailed elements, architecture and creating new bots. Useful if you are a new learner and trying to enter into automation career. The number one and most popular tool in automation is a Blue prism. In this post, I have given references for popular materials and resources so that you can use for your interviews.
RPA Blue Prism RPA blue prism tutorial popular resources I have given in this post. You can download quickly. Learning Blue Prism is a really good option if you are a learner of Robotic process automation.
RPA Advantages The RPA is also called "Robotic Process Automation"- Real advantages are you can automate any business process and you can complete the customer requests in less time.

The Books Available on Blue Prism 
Blue Prism resourcesDavid chappal PDF bookBlue Prism BlogsVi…

Three popular RPA tools functional differences

Robotic process automation is growing area and many IT developers across the board started up-skill in this popular area. I have written this post for the benefit of Software developers who are interested in RPA also called Robotic Process Automation.

In my previous post, I have described that total 12 tools are available in the market. Out of those 3 tools are most popular. Those are Automation anywhere, BluePrism and Uipath. Many programmers asked what are the differences between these tools. I have given differences of all these three RPA tools.

BluePrism Blue Prism has taken a simple concept, replicating user activity on the desktop, and made it enterprise strength. The technology is scalable, secure, resilient, and flexible and is supported by a comprehensive methodology, operational framework and provided as packaged software.The technology is developed and deployed within a “corridor of IT governance” and has sophisticated error handling and process modelling capabilities to ens…

R Vs SAS differences to read today

Statistical analysis should know by every software engineer. R is an open source statistical programming language. SAS is licensed analysis suite for statistics. The two are very much popular in Machine learning and data analytics projects.
SAS is analysis suite software and R is a programming language R ProgrammingR supports both statistical analysis and GraphicsR is an open source project.R is 18th most popular LanguageR packages are written in C, C++, Java, Python and.NetR is popular in Machine learning, data mining and Statistical analysis projects. SASSAS is a statistical analysis suite. Developed to process data sets in mainframe computers.Later developed to support multi-platforms. Like  Mainframe, Windows, and LinuxSAS has multiple products. SAS/ Base is very basic level.SAS is popular in data related projects. Learn SAS vs R Top Differences between SAS Vs R Programming SAS AdvantagesThe data integration from any data source is faster in SAS.The licensed software suite, so you…

Testing in DevOps to maximize Quality

Testing is the critical phase in DevOps. The process of DevOps is to speed up the deployment process. That means there are no shortcuts in testing. Covering most relevant test cases is the main thing the tester has to focus.
Requirements to Maximize QualityGood maintainable codeExhaustive coverage of casesTraining documents to Operations teamFewer bugs in the bug trackerLess complex and no redundant code Testing Activities in DevOpsThe team to use Tools to check the quality of codeStyle checker helps to correct code styleGood design avoids bugs in productionCode performance depends on the code-qualityBugs in production say poor testing  Tester Roles in DevOpsGood quality means zero bugs in production.Design requirements a base to validate testing results.Automated test scripts give quick feedback on the quality of code. Right test cases cover all the functional changes. The Bottom LineThe DevOps approach is seamless integration between Development and Operations without compromi…

Top Differences Read Today Agile vs Waterfall model

The Agile and Waterfall both models are popular in Software development. The Agile model is so flexible compared to waterfall model. Top differences on Waterfall vs Agile give you clear understanding on both the processes. Waterfall ModelThe traditional model is waterfall. It has less flexibility.Expensive and time consuming model.Less scalable to meet the demand of customer requirements.The approach is top down. Starting from requirements one has to finish all the stages, till deployment to complete one cycle.A small change in requirement, one has to follow all the stages till deployment.Waterfall model creates idleness in resource management. Agile ModelAgile model is excellent for rapid deployment of small changesThe small split-requirements you can call them as sprintsLess idleness in resource management.Scope for complete team involvement.Faster delivery makes client happy.You can deploy changes related to compliance or regulatory quickly.Collaboration improves among the team.