Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Python Web data - How to Extract HTML Tags Easily

With BeautifulSoup you can extract HTML and XML tags easily that present in Web data. Here is the best example of how to remove these.


The prime step of text analytics is cleaning. You can remove HTML tags using BeautifulSoup parser. Check out Python Logic and removing HTML tags. When analyzing web data, consider the below examples for your projects.


Python Ideas to Remove HTML tags
Python Ideas to Remove HTML tags


How I Removed Using BeautifulSoup

  1. Import BeautifulSoup
  2. Python Logic to Remove HTML tags
  3. Before and after executing the code

1. Import BeautifulSoup

import BeautifulSoup from bs4


2. Python BeautifulSoup: How to Remove HTML Tags

from bs4 import BeautifulSoup

soup = BeautifulSoup("<!DOCTYPE html><html><body><h1>My First Heading</h1><p>My first paragraph.</p></body></html>")

text = soup.get_text()

print(text)


3. Before and After Run

Before the run see the below code.


You need to import BeautifulSoup for Text analytics
Before Executing the code


After Run the tags are parsed. The means in the output tags removed.

I have shared Python sample logic on how to remove HTML tags. Also, given the package name you need. It is a useful example for text analytics.
Result after executing the code

Bottom-line of Result

Below are the steps you need for HTML tags parsing:
  1. Reads input HTML data
  2. Removes HTML tags
  3. Prints only text data

Keep Reading

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)

How to Fix datetime Import Error in Python Quickly