Featured Post

How to Build CI/CD Pipeline: GitHub to AWS

Image
 Creating a CI/CD pipeline to deploy a project from GitHub to AWS can be done using various AWS services like AWS CodePipeline, AWS CodeBuild, and optionally AWS CodeDeploy or Amazon ECS for application deployment. Below is a high-level guide on how to set up a basic GitHub to AWS pipeline: Prerequisites AWS Account : Ensure access to the AWS account with the necessary permissions. GitHub Repository : Have your application code hosted on GitHub. IAM Roles : Create necessary IAM roles with permissions to interact with AWS services (e.g., CodePipeline, CodeBuild, S3, ECS, etc.). AWS CLI : Install and configure the AWS CLI for easier management of services. Step 1: Create an S3 Bucket for Artifacts AWS CodePipeline requires an S3 bucket to store artifacts (builds, deployments, etc.). Go to the S3 service in the AWS Management Console. Create a new bucket, ensuring it has a unique name. Note the bucket name for later use. Step 2: Set Up AWS CodeBuild CodeBuild will handle the build proces

5 HBase Vs. RDBMS Top Functional Differences

Here're the differences between RDBMS and HBase. HBase in the Big data context has a lot of benefits over RDBMS. The listed differences below make it understandable why HBASE is popular in Hadoop (or Bigdata) platform.

5 HBase Vs. RDBMS Top Functional Differences

5 HBase Vs. RDBMS Top Functional Differences


Here're the differences unlock now.

Random Accessing


HBase handles a large amount of data that is store in a distributed manner in the column-oriented format while RDBMS is systematic storage of a database that cannot support a random manner for accessing the database.

Database Rules


RDBMS strictly follows Codd's 12 rules with fixed schemas and row-oriented manner of database and also follows ACID properties.


HBase follows BASE properties and implements complex queries.
Secondary indexes, complex inner and outer joins, count, sum, sort, group, and data of page and table can easily be accessible by RDBMS.

Storage


From small to medium storage application there is the use of RDBMS that provides the solution with MySQL and PostgreSQL whose size increase with concurrency and performance. 


Codd's rules always need to keep in mind while extending the size of the database in the use of data processing.

Data Integrity


RDBMS focuses on and emphasizes consistency, referential integrity, abstraction from the physical layer, and complex queries through SQL language.

Takeaway

  • There is no single-point failure in HBASE. You always have backup data.
  • The server regions have the flexibility to share or rebalance the load among the servers.
  • Automatic partition helps to distribute its workload among servers. It happens with its in-built feature of HBASE.
  • The cost involved in the maintenance of HBASE is comparatively low.


Keep Reading

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

How to Check Kafka Available Brokers

SQL Query: 3 Methods for Calculating Cumulative SUM