Featured Post

Best Practices for Handling Duplicate Elements in Python Lists

Image
Here are three awesome ways that you can use to remove duplicates in a list. These are helpful in resolving your data analytics solutions.  01. Using a Set Convert the list into a set , which automatically removes duplicates due to its unique element nature, and then convert the set back to a list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = list(set(original_list)) 02. Using a Loop Iterate through the original list and append elements to a new list only if they haven't been added before. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] for item in original_list:     if item not in unique_list:         unique_list.append(item) 03. Using List Comprehension Create a new list using a list comprehension that includes only the elements not already present in the new list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] [unique_list.append(item) for item in original_list if item not in unique_list] All three methods will result in uni

5 HBase Vs. RDBMS Top Functional Differences

Here're the differences between RDBMS and HBase. HBase in the Big data context has a lot of benefits over RDBMS. The listed differences below make it understandable why HBASE is popular in Hadoop (or Bigdata) platform.

5 HBase Vs. RDBMS Top Functional Differences

5 HBase Vs. RDBMS Top Functional Differences


Here're the differences unlock now.

Random Accessing


HBase handles a large amount of data that is store in a distributed manner in the column-oriented format while RDBMS is systematic storage of a database that cannot support a random manner for accessing the database.

Database Rules


RDBMS strictly follows Codd's 12 rules with fixed schemas and row-oriented manner of database and also follows ACID properties.


HBase follows BASE properties and implements complex queries.
Secondary indexes, complex inner and outer joins, count, sum, sort, group, and data of page and table can easily be accessible by RDBMS.

Storage


From small to medium storage application there is the use of RDBMS that provides the solution with MySQL and PostgreSQL whose size increase with concurrency and performance. 


Codd's rules always need to keep in mind while extending the size of the database in the use of data processing.

Data Integrity


RDBMS focuses on and emphasizes consistency, referential integrity, abstraction from the physical layer, and complex queries through SQL language.

Takeaway

  • There is no single-point failure in HBASE. You always have backup data.
  • The server regions have the flexibility to share or rebalance the load among the servers.
  • Automatic partition helps to distribute its workload among servers. It happens with its in-built feature of HBASE.
  • The cost involved in the maintenance of HBASE is comparatively low.


Keep Reading

Comments

Popular posts from this blog

Explained Ideal Structure of Python Class

6 Python file Methods Real Usage

How to Decode TLV Quickly