Featured Post

How to Work With Tuple in Python

Image
Tuple in python is one of the streaming datasets. The other streaming datasets are List and Dictionary. Operations that you can perform on it are shown here for your reference. Writing tuple is easy. It has values of comma separated, and enclosed with parenthesis '()'. The values in the tuple are immutable, which means you cannot replace with new values. #1. How to create a tuple Code: my_tuple=(1,2,3,4,5) print(my_tuple) Output: (1, 2, 3, 4, 5) ** Process exited - Return Code: 0 ** Press Enter to exit terminal #2. How to read tuple values Code: print(my_tuple[0]) Output: 1 ** Process exited - Return Code: 0 ** Press Enter to exit terminal #3. How to add two tuples Code: a=(1,6,7,8) c=(3,4,5,6,7,8) d=print(a+c) Output: (1, 6, 7, 8, 3, 4, 5, 6, 7, 8) ** Process exited - Return Code: 0 ** Press Enter to exit terminal #4.  How to count tuple values Here the count is not counting values; count the repetition of a given value. Code: sample=(1, 6, 7, 8, 3, 4, 5, 6, 7, 8) print(sample

The Growth of Machine Learning till TensorFlow

The Internet and the vast amount of data are inspirations for CEOs of big corporations to start to use Machine learning. It is to provide a better experience to users.

How TensorFlow Starts

Let us take Amazon, online retail that uses Machine learning. The algorithm's purpose is to generate revenue. Based on user search data, the ML application provides information or insights.

The other example is the advertising platform where Google is a leader in this line. Where it shows ads based on the user movements while surfing the web. These are just a few, but there are many in reality.

TensorFlow is a new generation framework for Machine Learning developers. Here is the flow of how it started.
Machine Learning


Evolution

Evolution of TensorFlow

Top ML Frameworks

Torch

  • The torch is the first framework developed in 2002 by Ronan Collobert. Initially, IBM and Facebook have shown much interest.
  • The interface language is Lua.
  • The primary focus is matrix calculations. It is suitable for developing neural networks.

Theano

  • It is developed in 2010 by the University of Montreal. It is highly reliable to process graphs (GPU).
  • Theano stores operations in a data structure called a graph, which it compiles into high-performance code. It uses Python routines.

Caffe

  • This framework is much popular in processing Image recognition.
  • Caffe is written in C++.
  • It is popular in Machine Learning and Neural networks.

Keras

  • It is well known for developing neural networks. 
  • The real advantages or simplicity and easy development.
  • Fran├žois Chollet created Keras as an interface to other machine learning frameworks, and many developers access Theano through Keras to combine Keras's simplicity with Theano's performance.

TensorFlow

This is developed by Google in 2015. You can use TensorFlow on Google cloud. It supports Python heavily. The core functions of this framework developed in .C++

Takeaways.

  1. The story of Machine Learning started in the 18th century.
  2. Python is the top interface language in the major ML frameworks.
  3. Python is the prime language you need for 20th-century Data science projects.

Comments

Popular posts from this blog

7 AWS Interview Questions asked in Infosys, TCS

How to Decode TLV Quickly

Hyperledger Fabric: 20 Real Interview Questions