Featured Post

Mastering flat_map in Python with List Comprehension

Image
Introduction In Python, when working with nested lists or iterables, one common challenge is flattening them into a single list while applying transformations. Many programming languages provide a built-in flatMap function, but Python does not have an explicit flat_map method. However, Python’s powerful list comprehensions offer an elegant way to achieve the same functionality. This article examines implementation behavior using Python’s list comprehensions and other methods. What is flat_map ? Functional programming  flatMap is a combination of map and flatten . It transforms the collection's element and flattens the resulting nested structure into a single sequence. For example, given a list of lists, flat_map applies a function to each sublist and returns a single flattened list. Example in a Functional Programming Language: List(List(1, 2), List(3, 4)).flatMap(x => x.map(_ * 2)) // Output: List(2, 4, 6, 8) Implementing flat_map in Python Using List Comprehension Python’...

Exclusive Apache Kafka Top Features

Here are the top features of Kafka. It works on the principle of publishing messages. It routes real-time information to consumers far faster. Also, it connects heterogeneous applications by sending messages among them. Here the prime component (a.k.a message router) is a broker. The top features you can read here.


Kafka features


The exclusive Kafka features

The message broker provides seamless integration, but there are two collateral objectives: the first is to not block the producers and the second is to not let the producers know who the final consumers are.

Apache Kafka is a real-time publish-subscribe solution messaging system: open source, distributed, partitioned, replicated, commit-log based with a publish-subscribe schema. Its main characteristics are as follows:

1. Distributed. Cluster


Centric design that supports the distribution of the messages over the cluster members, maintaining the semantics. So you can grow the cluster horizontally without downtime.

2. Multiclient.


Easy integration with different clients from different platforms: Java, .NET, PHP, Ruby, Python, etc.

3. Persistent.


You cannot afford any data lost. Kafka is designed with efficient O(1), so data structures provide constant time performance no matter the data size.

4. Real time.


The messages produced are immediately seen by consumer threads; these are the basis of the systems called complex event processing (CEP).

5. Very high throughput.


As we mentioned, all the technologies in the stack are designed to work in commodity hardware. Kafka can handle hundreds of read and write operations per second from a large number of clients.


Related posts

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)

5 SQL Queries That Popularly Used in Data Analysis