Featured Post

8 Ways to Optimize AWS Glue Jobs in a Nutshell

Image
  Improving the performance of AWS Glue jobs involves several strategies that target different aspects of the ETL (Extract, Transform, Load) process. Here are some key practices. 1. Optimize Job Scripts Partitioning : Ensure your data is properly partitioned. Partitioning divides your data into manageable chunks, allowing parallel processing and reducing the amount of data scanned. Filtering : Apply pushdown predicates to filter data early in the ETL process, reducing the amount of data processed downstream. Compression : Use compressed file formats (e.g., Parquet, ORC) for your data sources and sinks. These formats not only reduce storage costs but also improve I/O performance. Optimize Transformations : Minimize the number of transformations and actions in your script. Combine transformations where possible and use DataFrame APIs which are optimized for performance. 2. Use Appropriate Data Formats Parquet and ORC : These columnar formats are efficient for storage and querying, signif

Exclusive Apache Kafka Top Features

Here are the top features of Kafka. It works on the principle of publishing messages. It routes real-time information to consumers far faster. Also, it connects heterogeneous applications by sending messages among them. Here the prime component (a.k.a message router) is a broker. The top features you can read here.


Kafka features


The exclusive Kafka features

The message broker provides seamless integration, but there are two collateral objectives: the first is to not block the producers and the second is to not let the producers know who the final consumers are.

Apache Kafka is a real-time publish-subscribe solution messaging system: open source, distributed, partitioned, replicated, commit-log based with a publish-subscribe schema. Its main characteristics are as follows:

1. Distributed. Cluster


Centric design that supports the distribution of the messages over the cluster members, maintaining the semantics. So you can grow the cluster horizontally without downtime.

2. Multiclient.


Easy integration with different clients from different platforms: Java, .NET, PHP, Ruby, Python, etc.

3. Persistent.


You cannot afford any data lost. Kafka is designed with efficient O(1), so data structures provide constant time performance no matter the data size.

4. Real time.


The messages produced are immediately seen by consumer threads; these are the basis of the systems called complex event processing (CEP).

5. Very high throughput.


As we mentioned, all the technologies in the stack are designed to work in commodity hardware. Kafka can handle hundreds of read and write operations per second from a large number of clients.


Related posts

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

How to Check Kafka Available Brokers

SQL Query: 3 Methods for Calculating Cumulative SUM