Featured Post

Python map() and lambda() Use Cases and Examples

Image
 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work. Python map and lambda top use cases 1. Using map() with lambda The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list). Example: Doubling Numbers numbers = [ 1 , 2 , 3 , 4 , 5 ] doubled = list ( map ( lambda x: x * 2 , numbers)) print (doubled) # Output: [2, 4, 6, 8, 10] 2. Using map() to Convert Data Types Example: Converting Strings to Integers string_numbers = [ "1" , "2" , "3" , "4" , "5" ] integers = list ( map ( lambda x: int (x), string_numbers)) print (integers) # Output: [1, 2, 3, 4, 5] 3. Using map() with Multiple Iterables You can also use map() with more than one iterable. The lambda function can take multiple arguments. Example: Adding Two Lists Element-wise list1 = [ 1 , 2 , 3 ]

How to Understand Pickling and Unpickling in Python

Here are the Python pickling and unpickling best examples and the differences between these two.


pickling and unpickling in python




These you can use to serialize and deserialize the python data structures. The concept of writing the total state of an object to the file is called pickling, and to read a Total Object from the file is called unpickling.


Pickle and Unpickle

The process of writing the state of an object to the file (converting a class object into a byte stream) and storing it in the file is called pickling. It is also called object serialization.

The process of reading the state of an object from the file ( converting a byte stream back into a class object) is called unpickling. It is an inverse operation of pickling. It is also called object deserializationThe pickling and unpickling can implement by using a pickling module since binary files support byte streams. Pickling and unpickling should be possible using binary files.


Data types you can pickle

  1. Integers
  2. Booleans
  3. Complex numbers
  4. Floats
  5. Normal and Unicode strings
  6. Tuple
  7. List
  8. Set and dictionaries which contains pickling objects
  9. Classes and built-in functions can define at the top level of a module.

Functions you need


dump()


The above function performs pickling. It returns the pickled representation of an object as a byte object instead of writing it to the file. It is called to serialize an object hierarchy.


Syntax:


import pickle

pickle.dump(object, file, protocol)


where

the object is a python object to serialize

a file is a file object in which the serialized python object will be stored


protocol if not specified is 0. If specified as HIGHEST PROTOCOL or negative, then the highest protocol version available will be used. 



load()


The above function performs unpickling. It reads a pickled object from a binary file and returns it as an object. It is used to deserialize a data stream.


Syntax:


import pickle

pickle.load(file)



Related

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Python placeholder '_' Perfect Way to Use it