Featured Post

Claude Code for Beginners: Step-by-Step AI Coding Tutorial

Image
 Artificial Intelligence is changing how developers write software. From generating code to fixing bugs and explaining complex logic, AI tools are becoming everyday companions for programmers. One such powerful tool is Claude Code , powered by Anthropic’s Claude AI model. If you’re a beginner or  an experienced developer looking to improve productivity, this guide will help you understand  what Claude Code is, how it works, and how to use it step-by-step . Let’s get started. What is Claude Code? Claude Code is an AI-powered coding assistant built on top of Anthropic’s Claude models. It helps developers by: Writing code from natural language prompts Explaining existing code Debugging errors Refactoring code for better readability Generating tests and documentation In simple words, you describe what you want in plain English, and Claude Code helps turn that into working code. It supports multiple programming languages, such as: Python JavaScri...

5 Python Pandas Tricky Examples for Data Analysis

Here are five tricky Python Pandas examples. These provide detailed insights to work with Pandas in Python,


Pandas examples

#1 Dealing with datetime data (parse_dates pandas example)


import pandas as pd

# Convert a column to datetime format

data['date_column'] = pd.to_datetime(data['date_column'])


# Extract components from datetime (e.g., year, month, day)

data['year'] = data['date_column'].dt.year

data['month'] = data['date_column'].dt.month


# Calculate the time difference between two datetime columns

data['time_diff'] = data['end_time'] - data['start_time']


#2 Working with text data

 

# Convert text to lowercase

data['text_column'] = data['text_column'].str.lower()


# Count the occurrences of specific words in a text column

data['word_count'] = data['text_column'].str.count('word')


# Extract information using regular expressions

data['extracted_info'] = data['text_column'].str.extract(r'(\d+)')


#3 Handling large datasets efficiently


# Read a large dataset in chunks

chunk_size = 100000

data_chunks = pd.read_csv('large_data.csv', chunksize=chunk_size)

# Process data in chunks

for chunk in data_chunks:

    # Perform calculations or manipulations on each chunk


# Append data from multiple files

file_list = ['file1.csv', 'file2.csv', 'file3.csv']

combined_data = pd.concat([pd.read_csv(file) for file in file_list])


#4 Pivot tables and reshaping data


# Create a pivot table

pivot_table = data.pivot_table(values='column2', index='column1', columns='column3', aggfunc='mean')


# Unstack a multi-index DataFrame

unstacked_data = pivot_table.unstack().reset_index()


# Melt a DataFrame from wide to long format

melted_data = pd.melt(data, id_vars=['id'], value_vars=['var1', 'var2'], var_name='variable', value_name='value')


#5 Efficient memory usage


# Optimize memory usage of DataFrame columns

data['numeric_column'] = pd.to_numeric(data['numeric_column'], downcast='integer')

data['category_column'] = data['category_column'].astype('category')


# Load a subset of columns from a large dataset

selected_columns = ['column1', 'column2', 'column3']

data_subset = pd.read_csv('large_data.csv', usecols=selected_columns)


These examples demonstrate more advanced techniques for handling datetime data, text data, large datasets, reshaping data, and optimizing memory usage. They highlight some of the powerful features that pandas provide for complex data analysis tasks.


Related

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Step-by-Step Guide to Reading Different Files in Python

5 SQL Queries That Popularly Used in Data Analysis