Featured Post

Step-by-Step Guide to Reading Different Files in Python

Image
 In the world of data science, automation, and general programming, working with files is unavoidable. Whether you’re dealing with CSV reports, JSON APIs, Excel sheets, or text logs, Python provides rich and easy-to-use libraries for reading different file formats. In this guide, we’ll explore how to read different files in Python , with code examples and best practices. 1. Reading Text Files ( .txt ) Text files are the simplest form of files. Python’s built-in open() function handles them effortlessly. Example: # Open and read a text file with open ( "sample.txt" , "r" ) as file: content = file.read() print (content) Explanation: "r" mode means read . with open() automatically closes the file when done. Best Practice: Always use with to handle files to avoid memory leaks. 2. Reading CSV Files ( .csv ) CSV files are widely used for storing tabular data. Python has a built-in csv module and a powerful pandas library. Using cs...

How to Deal With Missing Data: Pandas Fillna() and Dropna()

Here are the best examples of Pandas fillna(), dropna() and sum() methods. We have explained the process in two steps - Counting and Replacing the Null values.


Check and Replace Column Nulls


Count Nulls

## count null values column-wise

null_counts = df.isnull().sum()


print(null_counts)

```


Output:

```

Column1    1

Column2    1

Column3    5

dtype: int64

```

In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise:


```

df.isnull().sum()

```


##Code snippet to count null values row-wise:


```

df.isnull().sum(axis=1)

```


In the above code, `df` is the Pandas DataFrame for which you want to count the null values. The `isnull()` function returns a DataFrame with the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. 

The `sum()` function is then applied to the resulting DataFrame to count the number of null values.

Fill null values with zeros in Pandas


```

import pandas as pd


# create a sample dataframe

data = {'Column1': [1, 2, 3, 4, None],

        'Column2': ['A', 'B', None, 'C', 'D'],

        'Column3': [None, None, None, None, None]}

df = pd.DataFrame(data)


Fill Nulls

To fill null values with '0' in Pandas DataFrame, you can use the `fillna()` function. Here's an example code snippet to do this:


```

import pandas as pd


# create a sample dataframe

data = {'Column1': [1, 2, 3, 4, None],

        'Column2': ['A', 'B', None, 'C', 'D'],

        'Column3': [None, None, None, None, None]}

df = pd.DataFrame(data)


# fill null values with 0

df.fillna(0, inplace=True)


print(df)

```


Output:


```

   Column1 Column2  Column3

0      1.0      A      0.0

1      2.0      B      0.0

2      3.0      0      0.0

3      4.0      C      0.0

4      0.0      D      0.0

```

In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then we use the `fillna()` function to replace all null values in the DataFrame with '0'. The `inplace=True` parameter ensures that the original DataFrame is modified and not a copy. Finally, we print the modified DataFrame with null values filled with '0'.


Note that the `axis` parameter is set to 0 by default in the `sum()` function, which means that it counts null values column-wise. To count null values row-wise, you need to set `axis` to 1.


Drop Nulls


df.dropna() 

It drops rows with any columns having the Nulls.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)