Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

Python map() and lambda() Use Cases and Examples

 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work.

Python map and lambda


Python map and lambda top use cases

1. Using map() with lambda

The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list).

Example: Doubling Numbers


numbers = [1, 2, 3, 4, 5] doubled = list(map(lambda x: x * 2, numbers)) print(doubled) # Output: [2, 4, 6, 8, 10]

2. Using map() to Convert Data Types

Example: Converting Strings to Integers


string_numbers = ["1", "2", "3", "4", "5"] integers = list(map(lambda x: int(x), string_numbers)) print(integers) # Output: [1, 2, 3, 4, 5]

3. Using map() with Multiple Iterables

You can also use map() with more than one iterable. The lambda function can take multiple arguments.

Example: Adding Two Lists Element-wise


list1 = [1, 2, 3] list2 = [4, 5, 6] summed = list(map(lambda x, y: x + y, list1, list2)) print(summed) # Output: [5, 7, 9]

4. Using map() with Custom Functions

You can define a regular function and use it with map().

Example: Squaring Numbers


def square(x): return x ** 2 numbers = [1, 2, 3, 4, 5] squared = list(map(square, numbers)) print(squared) # Output: [1, 4, 9, 16, 25]

5. Combining filter() and map()

You can combine filter() and map() to process data in a pipeline.

Example: Squaring Even Numbers


numbers = [1, 2, 3, 4, 5] squared_evens = list(map(lambda x: x ** 2, filter(lambda x: x % 2 == 0, numbers))) print(squared_evens) # Output: [4, 16]

Summary

  • map() applies a function to each item in an iterable.
  • lambda allows you to define small, anonymous functions in line.
  • They can be combined for concise and expressive transformations of data.

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide