Posts

Featured Post

How to Build CI/CD Pipeline: GitHub to AWS

Image
 Creating a CI/CD pipeline to deploy a project from GitHub to AWS can be done using various AWS services like AWS CodePipeline, AWS CodeBuild, and optionally AWS CodeDeploy or Amazon ECS for application deployment. Below is a high-level guide on how to set up a basic GitHub to AWS pipeline: Prerequisites AWS Account : Ensure access to the AWS account with the necessary permissions. GitHub Repository : Have your application code hosted on GitHub. IAM Roles : Create necessary IAM roles with permissions to interact with AWS services (e.g., CodePipeline, CodeBuild, S3, ECS, etc.). AWS CLI : Install and configure the AWS CLI for easier management of services. Step 1: Create an S3 Bucket for Artifacts AWS CodePipeline requires an S3 bucket to store artifacts (builds, deployments, etc.). Go to the S3 service in the AWS Management Console. Create a new bucket, ensuring it has a unique name. Note the bucket name for later use. Step 2: Set Up AWS CodeBuild CodeBuild will handle the build proces

How to Write Complex Python Script: Explained Each Step

Image
 Creating a complex Python script is challenging, but I can provide you with a simplified example of a script that simulates a basic bank account system. In a real-world application, this would be much more elaborate, but here's a concise version. Python Complex Script Here is an example of a Python script that explains each step: class BankAccount:     def __init__(self, account_holder, initial_balance=0):         self.account_holder = account_holder         self.balance = initial_balance     def deposit(self, amount):         if amount > 0:             self.balance += amount             print(f"Deposited ${amount}. New balance: ${self.balance}")         else:             print("Invalid deposit amount.")     def withdraw(self, amount):         if 0 < amount <= self.balance:             self.balance -= amount             print(f"Withdrew ${amount}. New balance: ${self.balance}")         else:             print("Invalid withdrawal amount o

Python Regex: The 5 Exclusive Examples

Image
 Regular expressions (regex) are powerful tools for pattern matching and text manipulation in Python. Here are five Python regex examples with explanations: 01 Matching a Simple Pattern import re text = "Hello, World!" pattern = r"Hello" result = re.search(pattern, text) if result:     print("Pattern found:", result.group()) Output: Output: Pattern found: Hello This example searches for the pattern "Hello" in the text and prints it when found. 02 Matching Multiple Patterns import re text = "The quick brown fox jumps over the lazy dog." patterns = [r"fox", r"dog"] for pattern in patterns:     if re.search(pattern, text):         print(f"Pattern '{pattern}' found.") Output: Pattern 'fox' found. Pattern 'dog' found. It searches for both "fox" and "dog" patterns in the text and prints when they are found. 03 Matching Any Digit   import re text = "The price of the

Best Practices for Handling Duplicate Elements in Python Lists

Image
Here are three awesome ways that you can use to remove duplicates in a list. These are helpful in resolving your data analytics solutions.  01. Using a Set Convert the list into a set , which automatically removes duplicates due to its unique element nature, and then convert the set back to a list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = list(set(original_list)) 02. Using a Loop Iterate through the original list and append elements to a new list only if they haven't been added before. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] for item in original_list:     if item not in unique_list:         unique_list.append(item) 03. Using List Comprehension Create a new list using a list comprehension that includes only the elements not already present in the new list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] [unique_list.append(item) for item in original_list if item not in unique_list] All three methods will result in uni

10 Exclusive Python Projects for Interviews

Image
Here are ten Python projects along with code and possible solutions for your practice. 01. Palindrome Checker: Description: Write a function that checks if a given string is a palindrome (reads the same backward as forward). def is_palindrome(s):     s = s.lower().replace(" ", "")     return s == s[::-1] # Test the function print(is_palindrome("radar"))  # Output: True print(is_palindrome("hello"))  # Output: False 02. Word Frequency Counter: Description: Create a program that takes a text file as input and counts the frequency of each word in the file. def word_frequency(file_path):     with open(file_path, 'r') as file:         text = file.read().lower()         words = text.split()         word_count = {}         for word in words:             word_count[word] = word_count.get(word, 0) + 1     return word_count # Test the function file_path = 'sample.txt' word_count = word_frequency(file_path) print(word_count) 03. Guess the Nu

How to Fill Nulls in Pandas: bfill and ffill

Image
In Pandas, bfill and ffill are two important methods used for filling missing values in a DataFrame or Series by propagating the previous (forward fill) or next (backward fill) valid values respectively. These methods are particularly useful when dealing with time series data or other ordered data where missing values need to be filled based on the available adjacent values. ffill (forward fill): When you use the ffill method on a DataFrame or Series, it fills missing values with the previous non-null value in the same column. It propagates the last known value forward. This method is often used to carry forward the last observed value for a specific column, making it a good choice for time series data when the assumption is that the value doesn't change abruptly. Example: import pandas as pd data = {'A': [1, 2, None, 4, None, 6],         'B': [None, 'X', 'Y', None, 'Z', 'W']} df = pd.DataFrame(data) print(df) # Output: #      A     B

How to Handle Spaces in PySpark Dataframe Column

Image
In PySpark, you can employ SQL queries by importing your CSV file data to a DataFrame. However, you might face problems when dealing with spaces in column names of the DataFrame. Fortunately, there is a solution available to resolve this issue. Reading CSV file to Dataframe Here is the PySpark code for reading CSV files and writing to a DataFrame. #initiate session spark = SparkSession.builder \ .appName("PySpark Tutorial") \ .getOrCreate() #Read CSV file to df dataframe data_path = '/content/Test1.csv' df = spark.read.csv(data_path, header=True, inferSchema=True) #Create a Temporary view for the DataFrame df2.createOrReplaceTempView("temp_table") #Read data from the temporary view spark.sql("select * from temp_table").show() Output --------+-----+---------------+---+ |Student| Year|Semester1|Semester2| | ID | | Marks | Marks | +----------+-----+---------------+ | si1 |year1|62.08| 62.4| | si1 |year2|75.94| 76.75| | si

How to Convert Dictionary to Dataframe: Pandas from_dict

Image
 Pandas is a data analysis Python library.  The example shows you to convert a dictionary to a data frame. The point to note here is DataFrame will take only 2D data. So you need to supply 2D data.  Pandas Dictionary to Dataframe import pandas as pd import numpy as np data_dict = {'item1' : np.random.randn(4), 'item2' : np.random.randn(4)} df3=pd.DataFrame. from_dict (data_dict, orient='index') print(df3) Output 0 1 2 3 item1 -0.109300 -0.483624 0.375838 1.248651 item2 -0.274944 -0.857318 -1.203718 -0.061941 Explanation Using the NumPy package, created a dictionary with random values. There are two items - item 1 and item 2. The data_dict is input to the data frame. The from_dict method needs two parameters. These are data_dict and index. Here's the syntax you can refer to quickly. Related Hands-on Data Analysis Using Pandas How to create 3D data frame in Pandas